Coupled Oscillations Shortcourse Saudi Physical Society Syllabus (3-1433)

- 1- Introduction to the Course (what is it about, motivation/applications)
- 2- Introduction to Mathematica
- 3- Mathematical Introduction to Linear Algebra:
 - a. Solving simultaneous algebraic equations
 - b. Solving coupled differential equations
 - c. Vector basis
 - d. Diagonalization of matrices
 - e. Eigenvalue problem
 - f. Help me Mathematica!!
- 4- The harmonic oscillator
 - a. Simple
 - b. Not so simple harmonic oscillator
 - c. Springs in series/ parallel
 - d. Two masses/ one spring
 - e. Two masses connected to opposite walls without coupling
- 5- Introduction to Lagrange Mechanics
- 6- Coupled oscillators
 - a. Intro: Two masses connected to opposite walls with (weak/ strong) coupling
 - b. General case ("n" masses co-linear/non-co-linear in 3-D
 - c. Normalizing coupled oscillators
- 7- Practical examples:
 - a. Double pendulum
 - b. CO₂ molecule
- 8- Raman Spectroscopy
- 9- Misc.
 - a. The role of symmetry and the importance of Group Theory
 - b. Coupled oscillators (two dipoles) as in solid state physics and the 6-12 potential