CITATIONS:

A: Citations of Papers Published From 2002 to Date (Excluded Self-Citations)

“Effect of preparation conditions on the optical and thermochromic properties of thin films of tungsten oxide”.

Citations:
1. Fernandes, V.C., Santos, M.C., Bulhões, L.O.S.
“Nanogravimetric studies of tungsten oxide thin films obtained by the polymeric precursor method”

2. Joraid, A.A., Alamri, S.N.
“Effect of annealing on structural and optical properties of WO3 thin films prepared by electron-beam coating”

“Raman study of thermochromic phase transition in tungsten trioxide nanowires”

“Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these”
“Effect of humidity on structure and electrochromic properties of sol-gel-derived tungsten oxide films”

“A case study of optical properties and structure of sol-gel derived nanocrystalline electrochromic WO3 films”

“Electrochromic nanostructured tungsten oxide films by sol-gel: Structure and intercalation properties”

“Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties”

“Structure and optical properties of mesoporous tungsten oxide”

“Effect of oxalic acid dihydrate on optical and electrochemical properties of sol-gel derived amorphous electrochromic WO3 films”

“Characterization of tungsten oxide films produced by reactive pulsed laser deposition”

12. Hussain Z
“Dopant-dependent reflectivity and refractive index of microcrystalline HxWO3 and LixWO3 bronze thin films”

“Vacuum coating - Some like it cold - Part 2- Ambient temperature coating concepts for wide-ranging applications | [Vakuumbeschichtung - Some like it cold - Teil 2: Raumtemperatur- Beschichtungskonzepte für vielseitige Anwendungen]”
Galvanotechnik 96 (9), pp. 2208-2216 (2005)
“Effects of preparation conditions on the optical and thermocoloration properties of thin films of molybdenum oxide”

Citations:
1. Niklasson, G.A., Granqvist, C.G.
“Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these”

“Correlation between structure, stress and optical properties in direct current sputtered molybdenum oxide films”

“Electrochemical preparation of molybdenum trioxide thin films: Effect of sintering on electrochromic and electroinsertion properties”

Characterization of electrochemically co-deposited metal-molybdenum oxide films

“Effects of preparation conditions on the optical properties of thin films of tellurium oxide”

Citations:
1. Dewan, N., Sreenivas, K., Gupta, V.
Influence of γ -radiation doses on the properties of TeOx: (x=2-3) thin film

“X-ray photoelectron study of Te-W-O and Te-W-La-O glasses”
Inorganic Materials 43 (8), pp. 888-896 (2007)

“Fast detection of precipitates and oxides on CdZnTe surfaces by spectroscopic ellipsometry”
4. Su, F., Deng, Z.
“Indirect sensitization blue-upconversion wavelength vary in Tm³+/Yb³+ co-doped TeO₂-TiO₂-K₂O glasses”

5. Dewan, N., Sreenivas, K., Gupta, V.
“Properties of crystalline γ-TeO₂ thin film”

6. Dewan, N., Gupta, V., Sreenivas, K., Katiyar, R.S.
“Growth of amorphous TeO₄(2≤x≤3) thin film by radio frequency sputtering”
Journal of Applied Physics 101 (8), art. no. 084910 (2007)

7. Su, F.-N., Deng, Z.-D.
“Infrared-to-green upconversion properties of Er³+/Yb³+ co-doped TeO₂-TiO₂-K₂O glasses upon excitation with 976 nm laser diode”

8. Su, F.-N., Deng, Z.-D.
Upconversion properties of Er³+/Yb³+ co-doped TeO₂-Nb₂O₅-Li₂O glasses

Upconversion properties of Er³+/Yb³+ Co-doped TeO₂-TiO₂-K₂O glasses

“Characterization of thin films of a-SiOₓ(1.1<x<2.0) prepared by reactive evaporation of SiO”

Citations:
1. Hähnel, M., Brüser, V., Kersten, H.
“Diagnostics of SiOₓ-containing layers deposited on powder particles by dielectric barrier discharge”

“Characterization of Si-based nanoparticulates produced by carbothermic reduction of silica-containing slag”

Electronic state characterization of SiOₓ thin films prepared by evaporation
“Birefringence characterization of mono-dispersed silicon nanocrystals planar waveguides”

5. Goto, T., Miyazaki, H., Masumoto, H.
“Radiative cooling characteristics of functionally graded silicon suboxide films prepared by magnetron sputtering”

“Birefringence in optical waveguides made by silicon nanocrystal superlattices”

“*Determination of average refractive index of thin CeO2 films with large inhomogeneities*”

Citations:

“Conductivity and dielectric properties of thin amorphous cerium dioxide films”

2. Desroches MJ, Castillo IA, Munz RJ
“Determination of particle size distribution by laser diffraction of doped-CeO2 powder suspensions: Effect of suspension stability and sonication”
Particle and Particle Systems Characterization 22 (5): 310-319 APR (2006)

3. Thielsch, R.
“Optical and structural inhomogeneity in reactive evaporated and IAD CeO2 films analysed by X-ray diffraction and reverse optical engineering”

“*Laser Ablative Structure Modification of Poly (ethylene-Alt-Maleic Anhydride)*”
Chemistry of Materials Vol. 15. (2003), No. 20, pp 3887-3893
Citations:
1. Ling, M.M., Bao, Z.
 “Thin film deposition, patterning, and printing in organic thin film transistors”

 “Optical properties of gallium oxide films deposited by electron beam evaporation”

Citations:
 “Effect of GaIn ratio on the optical and electrical properties of GaInZnO thin films grown on Si O2 Si substrates”
 Applied Physics Letters 91 (9), art. no. 091910 (2007)

2. Ishikawa, H., Takeuchi, N., Okuda, N., Takeuchi, T., Horikoshi, Y.
 “Amorphous CuxGa1-xO film deposition by ultrahigh vacuum radio frequency magnetron sputtering”

 “Effect of annealing temperature on structural transformation of gallium based nanocrystalline oxide thin films and their optical properties”
 Optical Materials 29 (6), pp. 718-722 (2007)

 Electrical properties of Ga2O3-based dielectric thin films prepared by plasma enhanced atomic layer deposition (PEALD)

 “Ga2O3 thin film deposited by atomic layer deposition with high plasma power”

 “Photo-assisted local oxidation of GaN using an atomic force microscope”

 “Effect of excess plasma on photoelectron spectra of nanoporous GaP”
“Rf-plasma-assisted molecular-beam epitaxy of beta-Ga2O3”

“High-efficiency InGaN light-emitting diodes via sidewall selective etching and oxidation”

“Structural, electrical, and optical properties of transparent gallium oxide thin films grown by plasma-enhanced atomic layer deposition”

11. Pang ML, Shen WY, Lin J
“Enhanced photoluminescence of Ga2O3: Dy3+ phosphor films by Li+ doping”

12. Sinha, G., Adhikary, K., Chaudhuri, S.
“Sol-gel derived phase pure α-Ga2O3 nanocrystalline thin film and its optical properties”

“Band offsets at the interfaces of GaAs(100) with GdxGa0.4-xO0.6 insulators”

“Dielectric/Ag/Dielectric coated energy-efficient glass windows for warm climates”

Citations:

1. Sahu, D.R., Lin, S.-Y., Huang, J.-L.
“Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation”

2. Sun, X., Hong, R., Hou, H., Fan, Z., Shao, J.
“Optical properties and structures of silver thin films deposited by magnetron sputtering with different thicknesses”
“High quality transparent conductive ZnO/Ag/ZnO multilayer films deposited at room temperature”

Source paper: JP34 Al-Kuhaili M.F., Khawaja E.E., Ingram D.C., and Durrani S.M.A.
“A Study of Thin Films of V₂O₅ Containing Molybdenum from an Evaporation Boat”

Citations:
1. Tanemura, S., Miao, L., Kajino, Y., Itano, Y., Tanemura, M., Toh, S., Kaneko, K., Mori, Y.
“Fabrication and optical characterization of vanadium oxide nano-particulates thin film”

2. Putrolaynen, V.V., Velichko, A.A., Pergament, A.L., Cheremisin, A.B., Grishin, A.M.
“UV patterning of vanadium pentoxide films for device applications”

Source paper: JP35. Al-Kuhaili M.F., Durrani S.M.A and Khawaja E.E.
“Characterization of hafnium oxide thin films prepared by electron beam evaporation”

Citations:
Self-assembly and crystallization behavior of mesoporous, crystalline HfO₂ thin films: A model system for the generation of mesostructured transition-metal oxides
Small 1 (8-9), pp. 889-898 (2005)

2. Song, G., Yang, X., Tao, M., Huang, J.
Nondestructive thickness determination of high-k dielectric HfO₂ and interfacial oxide by spectroscopic ellipsometry

“Birefringence in optical waveguides made by silicon nanocrystal superlattices”
“CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation”

Citations:
1. Caglar, Y., Ilican, S., Caglar, M.
 “Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films”

2. Barsan, N., Koziej, D., Weimar, U.
 “Metal oxide-based gas sensor research: How to?”
 Sensors and Actuators, B: Chemical 121 (1), pp. 18-35 (2007)

3. Nam, HJ (Nam, Hyun-Jeong); Sasaki, T (Sasaki, Takeshi); Koshizaki, N (Koshizaki, Naoto)
 “Optical CO gas sensor using a cobalt oxide thin film prepared by pulsed laser deposition under various argon pressures”

A: Total Citations: 60

B: Citations of Papers Published From 1988- 2001 (Excluded Self-Citations)

CITATIONS:

“Alpha and Gamma RF Discharges in N2 at Intermediate Pressures”

Citations:
1. Baranov, I.Ya., Koptev, A.V.
 “Model for calculating low-current moderate-pressure RF discharges with photon-driven secondary electron photoemission from the electrode surface

 “Alpha, gamma, and normal, abnormal glow discharge modes in radio-frequency capacitively coupled discharges at atmospheric pressure”

13. Lisovskii VA
 “Features of the Alpha-Gamma transition in a low-pressure RF Argon discharge”

14. Xu GC, Liu J
 “Perturbation theoretical analysis and its application for TM010-mode microwave cavity of a gas laser”

15. Odrobina I, Kando M
 “Discontinuous transitions between alpha and gamma regimes of rf capacitive discharge”
 Plasma Sources and Science & Technology 5 (3): 517-522 AUG 1996

16. Kaganovich ID, Tsendin LD, Yatsenko NA
 “2-Dimensional high-frequency discharge at medium pressures”
 Zhurnal Tekhnicheskoi Fiziki 64 (12): 25-46 DEC 1994

17. Uehara M, Kanazawa H
 “Experimental Study on operation at room-temperature of transverse flow Carbon-Monoxide laser excited by radio frequency discharge”

18. Lisovskii VA, Egorenkov VD, Krasnikov OV
 “Alpha-Gamma transition and low-frequency instability of HF low-pressure discharge”
 PISMA V Zhurnal Tekhnicheskoi Fiziki 19 (21): 90-95 NOV 12 1993

19. Young FF, Wu CHJ
 “2-Dimensional, self consistent, 3-moment simulation of RF glow discharged”

20. Vonbulow H, Schellhorn M
 “High-Power gasdynamically cooled Carbon-Monoxide laser”

21. Young FF, Wu CHJ
 “Comparisons of one-dimensional and 2-dimentional 3-moment fluid models for RF glow-discharges”

22. Young FF, Wu CHJ
 “A comparative study between nonequilibrium and equilibrium models of RF glow-discharges”
23. Li CW, Wu CH
“3 Fluid transport models by Particle-In-Cell method for RF glow-discharges”

24. Abramov VP, Kerner BS, Klenov SL
"Physical-Properties of a transverse High-Frequency gas-discharge.1. Basic properties and physical model of the discharge”

25. Abramov VP, Kerner BS, Klenov SL
“Physical-Properties of a transverse High-Frequency gas-discharge.2.Spatially nonuniform states in the discharge plasma”

26. Kobayashi K, Mutsukura N, Machi Y
“Electrical measurements in a 13.56 MHz radiofrequency discharge”
Vacuum 42 (12): 741-744 1991

27. Blenguer P, Boeuf JP
“Transition between different regimes of RF glow-discharges”

28. Andrews DA, King TA
“UHF excitation of Helium-Neon lasers.1. Selection of pumping frequency”

Source paper: JP4. Abu-Jarad, F., Durrani S.M.A and Islam M. A.
“Effect of 10.6 µm Pulsed Laser on CR-39”

Citations:
“Study etching characteristics of a track detector CR-39 with ultraviolet laser irradiation
NIM A- 572 (2): 826-830 MAR 11 2007

“Density of Thin Vapour Deposited Films of ZnSe”

Citations:
“Characterization of vacuum-evaporated ZnSe thin films”
2. Venkatachalam, S., Mangalaraj, D., Narayandass, Sa.K., Kim, K., Yi, J.
“Composition, structural, dielectric and DC characterization of vacuum deposited
ZnSe thin films”

Source paper: JP7. Khawaja, E.E., Durrani S.M.A, Al-Adel F.F., Salim M.A. and
Hussain M.S.
“X-ray Photoelectron Spectroscopy and Fourier Transform
Infrared Studies of Transition Metal Phosphate Glasses”.

Citations:

1. Marivel, S., Shimpi, M.R., Pedireddi, V.R.
“Novel supramolecular assemblies of coordination polymers of Zn(II) and bis(4-
nitrophenyl)phosphoric acid with some aza-donor compounds”
Crystal Growth and Design 7 (9), pp. 1791-1796 (2007)

2. Park SS, Choe SJ, Park DH
“The effect of phosphate treatment on nickel dispersion on MCM-41 mesoporous
material”

“Sol-gel obtained silicophosphates as materials to retain caesium at high
temperatures”

“Nanoscale cobalt oxides thin films obtained by CVD and sol-gel routes”
Journal De Physique IV 11 (PR3): 3437-3444 AUG 2001

“The two-layer structure of zndtp tribofilms Part 1: AES, XPS and XANES
analyses”
Tribology International 34 (8): 523-530 AUG 2001

“Composition and microstructure of cobalt oxide thin films obtained from a novel
cobalt(II) precursor by chemical vapor deposition”
Chemistry of Materials 13 (2): 588-593 FEB 2001

7. Pawlig O, Trettin R
“In-situ DRIFT spectroscopic investigation on the chemical evolution of zinc
phosphate acid-base cement”

9. Shih PY, Chin TS “Effect of redox state of copper on the properties of P2O5-Na2O-CuO glasses”
Materials Chemistry and Physics 60 (1): 50-57 JUL 15 1999

10. Gajbhiye NS “Trends in research on nanostructured magnetic materials”

11. Shih PY, Yung SW, Chin TS “FTIR and XPS studies of P2O5-Na2O-CuO glasses”
Journal of Non-Crystalline Solids 244 (2-3): 211-222 MAR 1999

12. Martin JM “Antiwear mechanisms of zinc dithiophosphate: a chemical hardness approach”

13. Martin JM “Lubricant additives and the chemistry of rubbing surfaces: Metal dithiophosphates triboreaction films revisited”

14. Panda RN, Gajbhiye NS “Magnetic properties of single domain epsilon-Fe3N synthesized by borohydride reduction route”

Citations:

 « Study etching characteristics of a track detector CR-39 with ultraviolet laser irradiation”
 NIM A 572 (2): 826-830 MAR 11 2007

2. Pinheiro JD, DaSilva AX, Santos RC
 “Studies of isochronal and isothermal annealing of alpha particle tracks in CR-39 polymer detectors”
 NIM (B) 111 (1-2): 104-110 APR 1996

 “Measurement of Absolute Stopping Cross Sections by Backscattering in Thin Dielectric Films”

Citations:

1. Vakevainen K
 “Stopping cross sections of ZnSe, Zn and Cu for H-1, He-4 and Li-7 ions”
 NIM (B) 122 (2): 187-193 FEB 1997

Source paper: JP15. Khawaja E.E., S.M.A. Durrani and M.A. Daous,
 “Optical Properties of Thin Films of WO₃, MoO₃ and Mixed-Oxides WO₃/MoO₃”.

Citations:

1. Begley, S.M., Brewster, M.Q.
 “Radiative properties of MoO₃ and Al nanopowders from light-scattering measurements”

 “Investigation of Al- and Ag-based top-emitting organic light-emitting diodes with metal oxides as hole-injection layer”

3. Kondrachova, L., Hahn, B.P., Vijayaraghavan, G., Williams, R.D., Stevenson, K.J.
 “Cathodic electrodeposition of mixed molybdenum tungsten oxides from peroxo-polymolybdatungstate solutions”
4. Azimirad R, Akhavan O, Moshfegh AZ
“Influence of coloring voltage and thickness on electrochromical properties of e-beam evaporated WO$_3$ thin films”

5. Moshfegh AZ, Azimirad R, Akhavan O
“Optical properties and surface morphology of evaporated (WO$_3$)$_{(1-x)}$-(Fe$_2$O$_3$)$_{(x)}$ thin films”

“Optical and electrochromic characterization of multilayered mixed metal oxide thin films”

“Optical and electrochromic properties of CVD mixed MoO$_3$-WO$_3$ thin films”

“Parallel synthesis and characterization of photoelectrochemically and electrochromically active tungsten-molybdenum oxides”

9. Altman EI, Droubay T, Chambers SA
“Growth of MoO$_3$ films by oxygen plasma assisted molecular beam epitaxy”

“Investigation of thin films of mixed oxides for gas-sensing applications”

Sol-gel prepared MoO$_3$-WO$_3$ thin-films for O-2 gas sensing

12. Granqvist CG

13. Papaefthimiou S, Leftheriotis G, Yianoulis P
“Study of electrochromic cells incorporating WO$_3$, MoO$_3$, WO$_3$-MoO$_3$ and V$_2$O$_5$ coatings”
Spectroscopy of Trace Gases Using a Pulsed Optoacoustic Technique”

Citations:
1. Petryk, M.W.P.
 Promising spectroscopic techniques for the portable detection of condensed-phase contaminants on surfaces
2. Cihelka, J., Horká, V., Civiš, S.
 “Laser diode photoacoustic detection in the infrared and near infrared spectral ranges”
 Proceedings of 2005 7th International Conference on Transparent Optical Networks, ICTON 2005 1, art. no. 1505820, pp. 349-354 (2005)
3. Horká, V., Civiš, S., Xu, L.-H., Lees, R.M.
 Laser diode photoacoustic detection in the infrared and near infrared spectral ranges
 Analyst 130 (8), pp. 1148-1154 (2005)
4. Fox, D.L.
 “Air pollution”
 Analytical Chemistry 71 (12), pp. 61R-80R (1999)
5. Fox, D.L.
 “Air pollution”

“Stability Region Studies of CO2 Gas Laser Mixture RF Capacitative Discharge”

Citations:
 “27.1 MHz transverse RF discharge performance in a sealed-off CO2 laser”

“Simple method for determining the Optical Constants of Thin Metal Films…”
Citations:

1. Lai, F., Lin, L., Gai, R., Lin, Y., Huang, Z.
 “Determination of optical constants and thicknesses of In2O3:Sn films from
 transmittance data”

2. Lin, L., Lai, F., Qu, Y., Gai, R., Huang, Z.
 “Influence of annealing in N2 on the properties of In2O3:Sn thin films prepared
 by direct current magnetron sputtering”
 *Materials Science and Engineering B: Solid-State Materials for Advanced

3. Ding, Y., Cao, Z.Q., Shen, Q.S.
 “Improved SPR technique for determination of the thickness and optical constants
 of thin metal films”

4. Vargas, W.E., Azofeifa, D.E., Clark, N.
 “Retrieved optical properties of thin films on absorbing substrates from
 transmittance measurements by application of a spectral projected gradient
 method”

5. Dakhel, A.A.
 “Optical constants of evaporated gadolinium oxide”

6. Peter Wuelfing, W., Zamborini, F.P., Templeton, A.C., Wen, X., Yoon, H.,
 Murray, R.W.
 “Monolayer-protected clusters: Molecular precursors to metal films”
 Chemistry of Materials 13 (1), pp. 87-95 (2001)

Source Paper: JP23
Durrani S.M.A., Al-Shukri A.M., Iob A. and Khawaja E.E.
“The optical constants of zinc sulphide films determined from
transmittance measurements”.

Citations:

1. Gode F, Gumus C, Zor M
 “Influence of the thickness on physical properties of chemical bath deposited
 hexagonal ZnS thin films”
“Synthesis and properties of ZnS/polyimide nanocomposite films”
Polymer International 56 (5), pp. 601-605 (2007)

3. López, M.C., Espinos, J.P., Martín, F., Leinen, D., Ramos-Barrado, J.R.
“Growth of ZnS thin films obtained by chemical spray pyrolysis: The influence of precursors”

4. Velumani, S., Ascencio, J.A.
“Formation of ZnS nanorods by simple evaporation technique”

5. Lu, C., Cui, Z., Li, Z., Yang, B., Shen, J.
“High refractive index thin films of ZnS/polythiourethane nanocomposites”

6. Vargas, W.E., Azofeifa, D.E., Clark, N.
“Retrieved optical properties of thin films on absorbing substrates from transmittance measurements by application of a spectral projected gradient method”

“Photoinduced non-linear optical effects in the ZnS-Al, In-Sn doped film-glass nanometer-sized interfaces”

8. Barrioz, V., Irvine, S.J.C., Jones, D.P.
“In Situ Thin Film Stress Measurements - A Path to Understanding the Structure and Morphology of Electron Beam Evaporated ZnS”

B Total Citations: 83

Grand Total Citations (A+B) = 143