Study of electron-beam evaporated Sn-doped In₂O₃ films S.M.A. Durrani ^{a,*}, E.E. Khawaja ^a, J. Shirokoff ^a, M.A. Daous ^a, G.D. Khattak ^b, M.A. Salim ^b, M.S. Hussain ^c Received 31 July 1995; revised 7 March 1996; accepted 9 April 1996 ## Abstract Electron beam evaporated Sn-doped In_2O_3 films have been prepared from the starting material with composition of (1-x) $In_2O_3 - x$ SnO_2 , where x = 0.0, 0.010, 0.025, 0.050, 0.090, and 0.120. X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and X-ray diffraction analysis were carried out on the films. Luminous transmittance and electrical resistivity of the films, show weak dependence on x. The composition of the film ([Sn]/[In] atomic ratio) was found to differ from that of the starting material. In fact, the atomic ratio was higher in the film than in the starting material by a factor which increases with x (ranging from 1.0 to 2.6). There is a relatively broad resistivity minimum in the layer atomic ratio range Sn/In = 0.06 - 0.09. These results compare well with those reported in the literature for Sn-doped In_2O_3 films, prepared by pyrolitic (spray) method. Keywords: Electron beam evaporation; Sn-doped In₂O₃ films; Atomic ratio; Resistivity minimum The Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia ^c Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia