Chapter 5- Reminder

- 1- First Newton's law formula: $\vec{F}_{net} = zero$
- 2- Second Newton's law formula: $\vec{F}_{net} = \vec{ma}$
- 3- Gravitational force: $\vec{F}_g = m\vec{g}$
- 4- Weight force: $\overrightarrow{W}_g = \overrightarrow{mg}$
- 5- Third Newton's law formula: $\vec{F}_{AB} = -\vec{F}_{BA}$

Module of Motions

1- Motion of two objects connected with string

Motion of m₁ mass:

 $m_1g - T = m_1 a$

Motion of m₂ mass:

 $T - m_2 g = m_2 a$

2- Motion of an object on surface

$$F \cos \theta - F_k = m a$$

$$N + F \sin \theta - m g = 0$$

3- Motion of two objects one of them on plane and the second laying vertically

Motion of m₁ mass:

 $m_1 g - T = m_1 a$

Motion of m₂ mass:

 $T - m_2 g \sin \theta - F_k = m_2 a$

 $N - m_2 g \cos \theta = 0$

4- Motion of two objects connected with string moving on horizontal surface (frictionless)

Motion of m_1 mass:

$$F - T = m_1 a$$

$$N_1 - m_1 g = 0$$

Motion of m₂ mass:

$$T = m_2 a$$

$$N-m_2 g = 0$$

5- Motion of a pullet

$$-F_k = m a$$

$$N - m g = 0$$

6- An elevator motion

 $\underline{\textbf{Notice}} \colon \vec{F}_{EM} = -\vec{N}$

Motion of an elevator only:

 $T - Mg - F_N = M a$ Motion of a man only:

N - mg = m a

Motion of the elevator and the man:

T - (M+m)g = (M+m) a

Notice:

<u>Acceleration of system</u>: If <u>two objects or more</u> are moving as system, each object will has the <u>same</u> acceleration (they are moving with uniform acceleration and they have same <u>speed</u> and **distance** at any time).

<u>A slack of string</u>: If suddenly, the string (cord) becomes <u>not tight</u> (<u>not stretch</u>), therefore put the <u>Tension Force</u> at that moment is equal to <u>zero</u> in the motion formula to get the <u>acceleration</u> of the system.