MEPH 569 – SECOND MAJOR EXAM 032

<u>PR 1 A</u>

A certain 3-Ci point source has a specific gamma-ray constant of 1.8 R/h per curie at 1 am. Placing the source behind a shield reduces the exposure rate to 20 mR/h at 60cm. By what factor does the shield reduce the exposure rate ?

- a) 15
- b) 150
- c) 250
- d) 750
- e) 1500

<u>PR1</u> B

Shortly after a tritium inhalation incident, it is found that the initial equivalent dose rate to a worker is 10 mrem/h. The committed equivalent dose based on an effective half life of 10 days, is

- a) 0.144 rem
- b) 0.240 rem
- c) 2.40 rem
- d) 3.46 rem
- e) 3460 rem

<u>PR 1 C</u>

Match the following quantities and their SI units

a)	(Particle) Fluence	m^{-2}
b)	Energy fluence	$J m^{-1}$
c)	(Particle) fluence rate	$m^{-2} s^{-1}$
d)	Total mass stopping power	$C kg^{-1}$
e)	Linear energy transfer	s ⁻¹
f)	Absorbed dose rate	J m ²
g)	Kerma	$J kg^{-1} s^{-1}$
h)	Exposure	Js ⁻¹
		Jkg
		Jm ² kg ⁻¹

<u>PR 2</u>

"Stochastic" and "deterministic" (i.e. nonstochastic) are terms used to describe some qualities in health physics. The expressions are also applied to the biological effects of radiation.

- a) What is meant by "stochastic"?
- b) Give an example of a stochastic and a non-stochastic quatity in radiation physics.
- c) Give an example of a stochastic and a deterministic (non-stochastic) biological effects of radiation.
- d) How are radiation dose and the possible existence of a threshold thought to be related to incidence and severity for these two kinds of effects?

<u>PR 3</u>

In experiments with certain cells, it is found that survival is exponential as a function of dose. That is, the relative number of cells S/S_o that survive an absorbed dose D is given by $S/S_o = \exp(-kD)$, where k is a constant.

- a) If only 1% of the cells survive a dose of 38.5 Gy, what is the numerical value of k?
- b) What dose is lethal to half the cells?
- c) How is k related to the average dose for killing a cell?

<u>PR 4</u>

The classical definition of the roentgen is that amount of X or gamma radiation which will produce 1 esu of charge of either sign in 1 cm³ of dry air at STP under conditions of charged-particle equilibrium. In the SI system of units, the roentgen is defined as equal to 2.58×10^{-4} C/kg (exactly).

Using each of these two definitions, calculate the absorbed dose in air from an exposure of 1 R. Show your work. No credit for answer alone without showing how it was calculated.

Given:

$$\begin{split} W_{air} &= 34.0 \text{ eV/ip} = 34.0 \text{ J/C} \\ \mu_{en}/\rho_{air} &= 0.0271 \text{ cm}^2/\text{g} \\ \text{electronic charge} &= 4.80 \text{ x } 10^{-10} \text{ esu} \\ 1 \text{ MeV} &= 1.6 \text{ x } 10^{-6} \text{ ergs} = 1.6 \text{ x } 10^{-13} \text{ J} \\ \rho_{air} &= 1.293 \text{ x } 10\text{-}3 \text{ g/cm}^3 \text{ @ STP} \end{split}$$

<u>PR 5</u>

A 2.75-MeV photon produces a 1.10-MeV Compton electron (e_1) at point A in a 20-g target, as shown in the figure below. The electron emits a 0.60-MeV bremsstrahlung photon escapes from the target without interacting, as indicated in the figure. The photon scattered at A is scattered again at D, producing a 1.00-MeV Compton electron (e_2) , which loses 0.4 MeV in the target before escaping. Calculate the kerma and the absorbed dose, averaged over the target.

<u>PR 6</u>

A condenser-type pocket chamber with "air-equivalent" walls has a capacitance of 8×10^{-12} F and a volume of 3.1 cm^3 . it is initially charged at a potential difference of 250 V. after use in a field of gamma rays, the potential difference is 233 V. the temperature is 299K and the pressure is 748 torr.

- a) What is the exposure in R?
- b) Estimate the air dose.
- c) The soft tissue dose.

<u>PR 7</u>

A beam of 330 monoenergetic alpha particles per second enters a parallel-plate ionization chamber containing air, in which they stop. The energy of the particles as they enter is 4.90 MeV. The chamber shows a steady current of 7.2 x 10^{-12} A under saturation conditions. What is the W-value for alpha particles in air (W=average energy needed to produce an ion pair)

<u>PR 8</u>

A worker receives a whole-body equivalent dose of 23 mSv and is also exposed to short-lived radioiodine, which results in a equivalent dose of 130 mSv, restricted to the thyroid. These are the only exposures he receives during the year.

- a) What additional whole-body equivalent dose might he have received and still not exceeded ICRP60 recommendations?
- b) What additional thyroid equivalent dose might he have received and still not exceeded ICRP60 recommendations?

$$\mathbf{X} = \Gamma \frac{c}{r^2}, H_{T(\tau)} = \int_{t_o}^{t_o^{+1}} H_T dt, PV = nRT$$