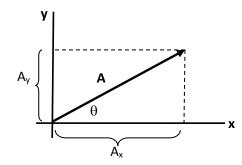
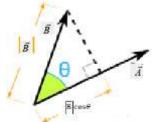
Chapter 3 Summary

Consider vector ${\bf A}$, with a direction of θ above the horizontal.



 $A_{y} = |\mathbf{A}| \sin \theta \equiv$ The projection of **A** along y-axis

 $A_{x} = |\mathbf{A}| \cos \theta \equiv \text{The projection of } \mathbf{A} \text{ along x-axis ,}$ $\equiv \text{The component of } \mathbf{A} \text{ along x-axis,}$

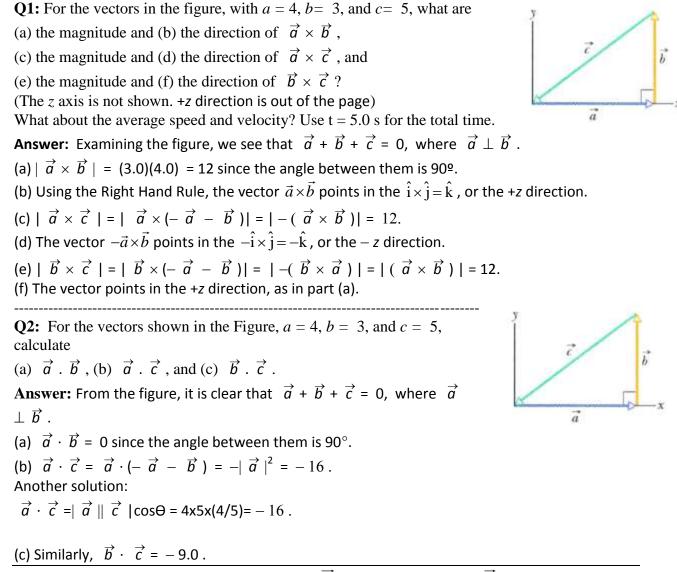


 $= \text{The component of } \mathbf{A} \text{ along y-axis.}$

Define the two vectors $\vec{A} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k})$, $\vec{B} = (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ and the angle between them is θ . Then we can construct the following table:

	Dot-product	Cross-product
Definition	$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left \vec{\mathbf{A}} \right \left \vec{\mathbf{B}} \right \cos \theta$	$\vec{A} \times \vec{B} = \vec{A} \times \vec{B} \sin \theta \hat{n}$
Unit vector	$\hat{\mathbf{i}}\cdot\hat{\mathbf{i}}=\hat{\mathbf{j}}\cdot\hat{\mathbf{j}}=\cdots=1,$	$\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = \hat{0},$
	$\hat{\mathbf{i}}\cdot\hat{\mathbf{j}}=\hat{\mathbf{j}}\cdot\hat{\mathbf{i}}=\cdots=0$	$\hat{i} \times \hat{j} = \hat{k}, \ \hat{j} \times \hat{k} = \hat{i}, \ \hat{k} \times \hat{i} = \hat{j}$
Expansion	$\vec{\mathbf{A}} \cdot \vec{\mathbf{B}} = \left(\mathbf{A}_x \hat{\mathbf{i}} + \mathbf{A}_y \hat{\mathbf{j}} + \mathbf{A}_z \hat{\mathbf{k}}\right) \cdot \left(\mathbf{B}_x \hat{\mathbf{i}} + \mathbf{B}_y \hat{\mathbf{j}} + \mathbf{B}_z \hat{\mathbf{k}}\right)$ $= \mathbf{A}_x \mathbf{B}_x + \mathbf{A}_y \mathbf{B}_y + \mathbf{A}_z \mathbf{B}_z$	$\begin{aligned} \overrightarrow{\mathbf{A}} \times \overrightarrow{\mathbf{B}} &= \left(\mathbf{A}_{x}\hat{\mathbf{i}} + \mathbf{A}_{y}\hat{\mathbf{j}} + \mathbf{A}_{z}\hat{\mathbf{k}}\right) \times \left(\mathbf{B}_{x}\hat{\mathbf{i}} + \mathbf{B}_{y}\hat{\mathbf{j}} + \mathbf{B}_{z}\hat{\mathbf{k}}\right) \\ &= \left(\mathbf{A}_{y}\mathbf{B}_{z} - \mathbf{A}_{z}\mathbf{B}_{y}\right)\hat{\mathbf{i}} - \left(\mathbf{A}_{x}\mathbf{B}_{z} - \mathbf{A}_{z}\mathbf{B}_{x}\right)\hat{\mathbf{j}} + \left(\mathbf{A}_{x}\mathbf{B}_{y} - \mathbf{A}_{y}\mathbf{B}_{x}\right)\hat{\mathbf{k}} \\ &= \begin{vmatrix}\hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \mathbf{A}_{x} & \mathbf{A}_{y} & \mathbf{A}_{z} \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z}\end{vmatrix} \end{aligned}$

vector_Help_session

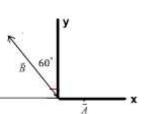


Q3. Find the sum of the following two vectors: \vec{A} : 8.66 in +*x*-direction, \vec{B} : 10.0, at 60° from +*y*-axis measured counterclockwise.

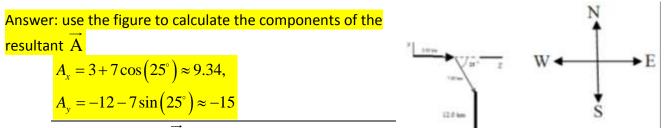
Answer:

It is valuable to plot the vector in Cartesian coordinate.

$$\vec{A} + \vec{B} = 8.66 \hat{i} + 10.0 \cos(60^\circ) \hat{j} - 10.0 \sin(60^\circ) \hat{i} = 5.00 \hat{j}$$



Q6: A man walks 3.00 km due East, then 7.00 km 25° South of East, and then 12.0 km due South. What is the final location, in km, of the man from the starting point?



Q10: A certain vector (\vec{A}) in the xy plane has an x

component of $A_x = 4.0$ m and a y component of $A_y = 10$

m. It is then rotated in the xy plane so its x component is doubled. Its new y component is about:

Answer:

The rotation will not change the magnitude of $\overrightarrow{\mathrm{A}}$. If we have the vector $\overrightarrow{\mathrm{A}'}$ after rotation, then

$$\left| \overrightarrow{\mathbf{A}} \right|^2 = \left| \overrightarrow{\mathbf{A'}} \right|^2 \Longrightarrow 4^2 + 100^2 = 8^2 + {y'}^2$$
$$y' = \underline{7.2 \text{ m}}$$

Q10. Vector $\vec{A} = 1.00 \hat{i} + 3.00 \hat{j}$, vector $\vec{B} = 4.00 \hat{i} - 1.00 \hat{j}$ and the vector $\vec{C} = 2.00 \hat{k}$. Find the angle (in degrees) between vector \vec{A} and vector $\vec{B} \times \vec{C}$.

<mark>A) 176</mark>

Ans:

$$\vec{D} = \vec{B} \times \vec{C} \text{ then angle between } \vec{A} \text{ and } \vec{D} = \theta = \cos^{-1} \left(\frac{A_x D_x + A_y D_y}{|A||B|} \right)$$

$$\vec{D} = \vec{B} \times \vec{C} = (4\vec{\iota} - 1.0\vec{j}) \times 2\vec{k} = -8\vec{j} - 2\vec{\iota}$$

$$|D| = \sqrt{68} = 8.25; |A| = \sqrt{10} = 3.16$$

$$\theta = \cos^{-1} \left(\frac{-2 - 24}{8.25 \times 3.16} \right) = 175.8^{\circ} \cong 176^{\circ}$$

Another solution:
Check the expression: $\vec{A} \times \vec{D} = |\vec{A}| |\vec{D}| \sin \theta \hat{k}$,

$$\vec{A} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 0 \\ -2 & -8 & 0 \end{vmatrix} = (-8 + 6)\hat{k} = -2\hat{k}, \text{ to find } \theta = -4^{\circ} + 180 = 17$$