Spin ½ (Pages 1-12 are needed)

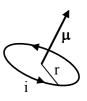
Recall that in the H-atom solution, we showed that the fact that the wavefunction $\psi(r)$ is single-valued requires that the angular momentum quantum number be integer: $\ell = 0, 1, 2$.. However, operator algebra allowed solutions $\ell = 0, 1/2, 1, 3/2, 2...$

Experiment shows that the electron possesses an intrinsic angular momentum called *spin* with $\ell=\frac{1}{2}$. By convention, we use the letter s instead of ℓ for the spin angular momentum quantum number : $s=\frac{1}{2}$. The existence of spin is not derivable from non-relativistic QM. It is not a form of orbital angular momentum; it cannot be derived from $\vec{L} = \vec{r} \times \vec{p}$. (The electron is a point particle with radius r=0.)

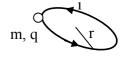
Electrons, protons, neutrons, and quarks all possess spin $s = \frac{1}{2}$. Electrons and quarks are elementary point particles (as far as we can tell) and have no internal structure. However, protons and neutrons are made of 3 quarks each. The 3 half-spins of the quarks add to produce a total spin of $\frac{1}{2}$ for the composite particle (in a sense, $\uparrow \uparrow \downarrow$ makes a single \uparrow). Photons have spin 1, mesons have spin 0, the delta-particle has spin 3/2. The graviton has spin 2. (Gravitons have not been detected experimentally, so this last statement is a theoretical prediction.)

Spin and Magnetic Moment

We can detect and measure spin experimentally because the spin of a charged particle is always associated with a magnetic moment. Classically, a magnetic moment is defined as a vector $\vec{\mu}$ associated with a loop of current. The direction of $\vec{\mu}$ is perpendicular to the plane of the current loop (right-hand-rule), and the magnitude is $\mu=i\,A=i\,\pi r^2$. The connection between orbital angular momentum (not spin) and magnetic moment can be seen in the following classical model: Consider a particle with mass m, charge q in circular orbit of radius r, speed v, period T.



$$i = \frac{q}{T}, \quad v = \frac{2\pi r}{T} \implies i = \frac{q v}{2\pi r} \qquad \mu = i A = \left(\frac{q v}{2\pi x}\right) \left(\pi r^{2}\right) = \frac{q v r}{2}$$



 $|\text{ angular momentum}| = L = p \; r \; = \; m \; v \; r \; \; , \; \text{ so} \quad v \; r = L/m \; , \; \text{ and } \; \mu = \; \frac{q \; v \; r}{2} \; = \; \frac{q}{2 \, m} \; L \; \; .$

So for a classical system, the magnetic moment is proportional to the orbital angular momentum:

$$\vec{\mu} = \frac{q}{2m} \vec{L}$$
 (orbital).

The same relation holds in a quantum system.

In a magnetic field B, the energy of a magnetic moment is given by $E=-\vec{\mu}\cdot\vec{B}=-\mu_z\,B$ (assuming $\vec{B}=B\hat{z}$). In QM, $L_z=\hbar\,m$. Writing electron mass as m_e (to avoid confusion with the magnetic quantum number m) and q=-e we have $\mu_z=-\frac{e\,\hbar}{2\,m_e}m$, where $m=-\ell\,..+\ell$. The quantity $\mu_B\equiv\frac{e\,\hbar}{2\,m_e}$ is called the Bohr magneton. The possible energies of the magnetic moment in $\vec{B}=B\hat{z}$ is given by $E_{orb}=-\mu_z\,B=-\mu_B\,B\,m$.

For *spin* angular momentum, it is found experimentally that the associated magnetic moment is twice as big as for the orbital case: $\vec{\mu} = \frac{q}{m} \, \vec{S} \, (spin)$ (We use S instead of L when referring to spin angular momentum.) This can be written $\mu_z = -\frac{e\,\hbar}{m_e} \, m = -2\,\mu_B \, m$. The energy of a spin in a field is

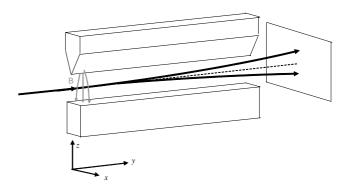
 $E_{spin} = -2\mu_B \, B \, m \, (m = \pm 1/2) \, a$ fact which has been verified experimentally. The existence of spin (s = ½) and the strange factor of 2 in the gyromagnetic ratio (ratio of $\vec{\mu}$ to \vec{S}) was first deduced from spectrographic evidence by Goudsmit and Uhlenbeck in 1925.

Another, even more direct way to experimentally determine spin is with a Stern-Gerlach device, (This page from QM notes of Prof. Roger Tobin, Physics Dept, Tufts U.)

Stern-Gerlach Experiment (W. Gerlach & O. Stern, Z. Physik **9**, 349-252 (1922).

$$\vec{F} = -\vec{\nabla} \left(\vec{\mu} \cdot \vec{B} \right) = -\vec{\mu} \cdot \vec{\nabla} \vec{B}$$

$$\vec{F} = \hat{z} \left(\mu_z \frac{\partial B_z}{\partial z} \right)$$



Deflection of atoms in z-direction is proportional to z-component of magnetic moment μ_z , which in turn is proportional to L_z . The fact that there are two beams is proof that $\ell=s=\frac{1}{2}$. The two beams correspond to m=+1/2 and m=-1/2. If $\ell=1$, then there would be three beams, corresponding to m=-1,0, 1. The separation of the beams is a direct measure of μ_z , which provides proof that $\mu_z=-2\,\mu_B$ m

The extra factor of 2 in the expression for the magnetic moment of the electron is often called the "g-factor" and the magnetic moment is often written as $\mu_z = -g\,\mu_B\,m$. As mentioned before, this cannot be deduced from non-relativistic QM; it is known from experiment and is inserted "by hand" into the theory. However, a relativistic version of QM due to Dirac (1928, the "Dirac Equation") predicts the existence of spin (s = ½) and furthermore the theory predicts the value g = 2. A later, better version of relativistic QM, called Quantum Electrodynamics (QED) predicts that g is a little larger than 2. The g-factor has been carefully measured with fantastic precision and the latest experiments give g = 2.0023193043718(±76 in the last two places). Computing g in QED requires computation of a infinite series of terms that involve progressively more messy integrals, that can only be solved with approximate numerical methods. The computed value of g is not known quite as precisely as experiment, nevertheless the agreement is good to about 12 places. QED is one of our most well-verified theories.

Spin Math

Recall that the angular momentum commutation relations

$$[\hat{L}^2, \hat{L}_x] = 0$$
, $[\hat{L}_i, \hat{L}_i] = i \hbar \hat{L}_k$ (i, j, and k cyclic)

were derived from the definition of the orbital angular momentum operator: $\vec{L} = \vec{r} \times \vec{p}$.

The spin operator \vec{S} does not exist in Euclidean space (it doesn't have a position or momentum vector associated with it), so we cannot derive its commutation relations in a similar way. Instead we boldly **postulate** that the same commutation relations hold for spin angular momentum:

$$[\hat{S}^2, \hat{S}_z] = 0$$
, $[\hat{S}_i, \hat{S}_j] = i \hbar \hat{S}_k$.

From these, we derive, just a before, that

$$\hat{S}^{2} |s m_{s}\rangle = \hbar^{2} s (s+1) |s m_{s}\rangle = \frac{3}{4} \hbar^{2} |s m_{s}\rangle \qquad (\text{since } s = \frac{1}{2})$$

$$\hat{S}_{z} |s m_{s}\rangle = \hbar m_{s} |s m_{s}\rangle = \pm \frac{1}{2} \hbar |s m_{s}\rangle \qquad (\text{since } m_{s} = -s, +s = -1/2, +1/2)$$

Notation: since $s = \frac{1}{2}$ always, we can drop this quantum number, and specify the eigenstates of \hat{S}^2 , and \hat{S}_z by giving only the m_s quantum number. There are various ways to write this:

$$\chi_{\pm} = |s, m_{s}\rangle = |m_{s}\rangle \equiv \begin{cases} & \text{spin up } (\uparrow) \equiv \chi_{+} \equiv |\alpha\rangle \equiv |\frac{1}{2}\rangle = |+\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} \\ & \text{spin down } (\downarrow) \equiv \chi_{-} \equiv |\beta\rangle \equiv |-\frac{1}{2}\rangle \equiv |-\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} \end{cases}$$

These states exist in a 2D subset of the full Hilbert Space called *spin space*. Since these two states are eigenstates of a Hermitian operator, they form a complete orthonormal set (within their part of Hilbert space)

and any, arbitrary state in spin space can always be written as $|\chi\rangle = a |\uparrow\rangle + b |\downarrow\rangle = \binom{a}{b}$ and the normalization gives:

$$\langle \chi | \chi \rangle = 1 \implies |a|^2 + |b|^2 = 1.$$

Note that:

$$\langle \uparrow | \uparrow \rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 1,$$

similarly:

$$\langle \downarrow | \downarrow \rangle = 1$$
, $\langle \uparrow | \downarrow \rangle = \langle \downarrow | \uparrow \rangle = 0$

If we were working in the full Hilbert Space of, say, the H-atom problem, then our basis states would be $|\ell| m_{\ell} s m_s \rangle$. n is another degree of freedom, so that the full specification of a basis state requires 4 quantum numbers without n. (More on the connection between spin and space parts of the state later.) [Note on language: throughout this section I will use the symbol \hat{S}_z (and \hat{S}_x , etc) to refer to both the observable ("the measured value of \hat{S}_z is $+\hbar/2$ ") and its associated operator ("the eigenvalue of \hat{S}_z is $+\hbar/2$ ").

The matrix form of S^2 and S_z in the $\left|m^{(z)}\right\rangle$ basis can be worked out element by element. (Recall that for any operator \hat{A} , $A_{mn} = \left\langle m \middle| \hat{A} \middle| n \right\rangle$

$$\begin{split} \left\langle \uparrow \middle| \hat{S}^2 \middle| \uparrow \right\rangle = & + \frac{3}{4} \hbar^2 \, \delta_{ss} \cdot \delta_{m_s m_{s'}}, \quad \left\langle \downarrow \middle| \hat{S}^2 \middle| \downarrow \right\rangle = + \frac{3}{4} \hbar^2 \, \delta_{ss} \cdot \delta_{m_s m_{s'}}, \quad \left\langle \uparrow \middle| \hat{S}^2 \middle| \downarrow \right\rangle = 0 \;, \; \; \text{etc.} \\ \left\langle \uparrow \middle| \hat{S}_z \middle| \uparrow \right\rangle = & + \frac{1}{2} \hbar \, \delta_{ss} \cdot \delta_{m_s m_{s'}}, \quad \left\langle \downarrow \middle| \hat{S}_z \middle| \downarrow \right\rangle = - \frac{1}{2} \hbar \, \delta_{ss} \cdot \delta_{m_s m_{s'}}, \quad \left\langle \uparrow \middle| \hat{S}_z \middle| \downarrow \right\rangle \; = 0 \;, \; \; \text{etc.} \end{split}$$

Then in the matrix notation one finds:

$$\begin{split} \left(\hat{\mathbf{S}}_{z}^{-}\right) &= \begin{pmatrix} \left\langle \alpha \left|\hat{\mathbf{S}}_{z}\right|\alpha\right\rangle & \left\langle \alpha \left|\hat{\mathbf{S}}_{z}\right|\beta\right\rangle \\ \left\langle \beta \left|\hat{\mathbf{S}}_{z}\right|\alpha\right\rangle & \left\langle \beta \left|\hat{\mathbf{S}}_{z}\right|\beta\right\rangle \end{pmatrix} = \begin{pmatrix} \frac{\hbar}{2} \left\langle \alpha \left|\alpha\right\rangle & -\frac{\hbar}{2} \left\langle \alpha \left|\beta\right\rangle \\ \frac{\hbar}{2} \left\langle \beta \left|\alpha\right\rangle & -\frac{\hbar}{2} \left\langle \beta \left|\beta\right\rangle \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \frac{\hbar}{2} \times 1 & -\frac{\hbar}{2} \times 0 \\ \frac{\hbar}{2} \times 0 & -\frac{\hbar}{2} \times 1 \end{pmatrix} \\ &= \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{split}$$

and

$$\left(\hat{\mathbf{S}}^2\right) = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Operator equations can be written in matrix form, for instance,

$$\hat{S}_z | \uparrow \rangle = + \frac{\hbar}{2} | \uparrow \rangle \qquad \Rightarrow \qquad \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = + \frac{\hbar}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

We are going ask; what happens when we make measurements of S_z , as well as S_x and S_y ?, (using a Stern-Gerlach apparatus). Will need to know: What are the matrices for the operators S_x and S_y ? These are derived from the raising and lowering operators:

To get the matrix forms of $\hat{S}_{_{+}}$ and $\hat{S}_{_{-}}$, we need a result:

$$\hat{S}_{\pm} \left| s, m_s \right\rangle = \hbar \sqrt{s \left(s + 1 \right) - m_s \left(m_s \pm 1 \right)} \, \left| s, \, m_s \pm 1 \right\rangle$$

For the case $s=\frac{1}{2}$, the square root factors are always 1 or 0. For instance, $s=\frac{1}{2}$, m=-1/2 gives $s(s+1)-m(m+1)=\frac{1}{2}\left(\frac{3}{2}\right)-\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)=1$. Consequently,

$$\hat{S}_{_{+}}\big|\!\!\downarrow\big\rangle \;=\; \hbar\,\big|\!\!\uparrow\big\rangle, \quad \hat{S}_{_{+}}\big|\!\!\uparrow\big\rangle \;=\; 0 \;\; \text{and} \;\; \hat{S}_{_{-}}\big|\!\!\uparrow\big\rangle \;=\; \hbar\,\big|\!\!\downarrow\big\rangle, \quad \hat{S}_{_{-}}\big|\!\!\downarrow\big\rangle \;=\; 0\,,$$

leading to

$$\langle \uparrow | S_+ | \uparrow \rangle = 0, \quad \langle \uparrow | S_+ | \downarrow \rangle = \hbar, \text{ etc.}$$

Then:

$$\hat{\mathbf{S}}_{+} = \begin{pmatrix} \langle +|\hat{\mathbf{S}}_{+}|+\rangle & \langle +|\hat{\mathbf{S}}_{+}|-\rangle \\ \langle -|\hat{\mathbf{S}}_{+}|+\rangle & \langle -|\hat{\mathbf{S}}_{+}|-\rangle \end{pmatrix} = \begin{pmatrix} 0 & \hbar\langle +|+\rangle \\ 0 & \hbar\langle -|+\rangle \end{pmatrix} = \hbar \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

and

$$\left(\hat{\mathbf{S}}_{-}\right) = \hbar \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

Notice that S_+ , S_- are not Hermitian.

Using $\hat{S}_x = \frac{1}{2}(\hat{S}_+ + \hat{S}_-)$ and $\hat{S}_y = \frac{1}{2i}(\hat{S}_+ - \hat{S}_-)$ yields

$$\begin{pmatrix} \hat{\mathbf{S}}_{\mathbf{x}} \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} \hat{\mathbf{S}}_{\mathbf{y}} \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & -\mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$$

These are Hermitian, of course.

H.W. Check the following table:

	lpha angle	eta angle		lpha angle	eta angle
\hat{S}^2	$\frac{3}{4} lpha angle$	$\frac{3}{4} eta angle$	$\hat{\mathbf{S}}_y$	$rac{i}{2}ig etaig angle$	$-\frac{i}{2} lpha angle$
$\hat{\mathbf{S}}_z$	$\frac{1}{2} lpha angle$	$-\frac{1}{2} eta angle$	\hat{S}_{+}	0	lpha angle
$\hat{\mathbf{S}}_{x}$	$\frac{1}{2} eta angle$	$\frac{1}{2} \alpha\rangle$	Ŝ_	eta angle	0

Example: Find the expectation value for the Hamiltonian $\hat{H} = a(\hat{S}_x^2 + \hat{S}_y^2 - 2\hat{S}_z^2) + b\hat{S}_z$, where a and b are constants.

Answer: Use the expression; $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$

We can find:

$$\hat{H} = a(\hat{S}_{x}^{2} + \hat{S}_{y}^{2} + \hat{S}_{z}^{2} - 3\hat{S}_{z}^{2}) + b\hat{S}_{z}$$
$$= a\hat{S}^{2} - 3a\hat{S}_{z}^{2} + b\hat{S}_{z}$$

And

$$\hat{H} |s, m_{s}\rangle = \left\{ a\hat{S}^{2} - 3a\hat{S}_{z}^{2} + b\hat{S}_{z} \right\} |s, m_{s}\rangle$$

$$= \left\{ as(s+1) - 3am_{s}^{2} + bm_{s} \right\} |s, m_{s}\rangle$$

$$= \left\{ \frac{3}{4}a - 3\frac{1}{4}a + bm_{s} \right\} |s, m_{s}\rangle = bm_{s} |s, m_{s}\rangle$$

Then

$$\langle s, m_s | \hat{H} | s, m_s \rangle = b m_s \langle s, m_s | s, m_s \rangle = b m_s$$

One-electron system

The Hamiltonian

$$H_o = \frac{p^2}{2m} - \frac{Z}{r}$$

has the uncoupled wave function $|\ell, m_\ell, s, m_s\rangle = |\ell, m_\ell\rangle |s, m_s\rangle$ which identify the angular and spin parts of the wave function. m_ℓ is the projection quantum number associated with ℓ and m_s is the projection quantum number associated with s satisfies the relations:

$$\begin{split} \left\langle \ell', m'_{\ell}, s', m'_{s} \middle| \hat{L}^{2} \middle| \ell, m_{\ell}, s, m_{s} \right\rangle &= \ell(\ell+1) \delta_{\ell\ell'} \delta_{ss'} \delta_{m_{\ell} m'_{\ell}} \delta_{m_{s} m'_{s}} \\ \left\langle \ell', m'_{\ell}, s', m'_{s} \middle| \hat{L}_{z} \middle| \ell, m_{\ell}, s, m_{s} \right\rangle &= m_{\ell} \delta_{\ell\ell'} \delta_{ss'} \delta_{m_{\ell} m'_{\ell}} \delta_{m_{s} m'_{s}} \\ \left\langle \ell', m'_{\ell}, s', m'_{s} \middle| \hat{S}^{2} \middle| \ell, m_{\ell}, s, m_{s} \right\rangle &= s(s+1) \delta_{\ell\ell'} \delta_{ss'} \delta_{m_{\ell} m'_{\ell}} \delta_{m_{s} m'_{s}} \\ \left\langle \ell', m'_{\ell}, s', m'_{s} \middle| \hat{S}_{z} \middle| \ell, m_{\ell}, s, m_{s} \right\rangle &= m_{s} \delta_{\ell\ell'} \delta_{ss'} \delta_{m_{\ell} m'_{\ell}} \delta_{m_{r} m'_{s}} \end{split}$$

Aslo, the wave function $|\ell, s, j, m_i\rangle$ in LS-coupling has similar relations:

$$\begin{split} \left\langle \ell', s', j', m'_{j} \left| \hat{L}^{2} \right| \ell, s, j, m_{j} \right\rangle &= \ell(\ell+1) \delta_{\ell\ell'} \delta_{ss'} \delta_{jj'} \delta_{m_{j}m'_{j}} \\ \left\langle \ell', s', j', m'_{j} \left| \hat{S}^{2} \right| \ell, s, j, m_{j} \right\rangle &= s(s+1) \delta_{\ell\ell'} \delta_{ss'} \delta_{jj'} \delta_{m_{j}m'_{j}} \\ \left\langle \ell', s', j', m'_{j} \left| \hat{J}^{2} \right| \ell, s, j, m_{j} \right\rangle &= j(j+1) \delta_{\ell\ell'} \delta_{ss'} \delta_{jj'} \delta_{m_{j}m'_{j}} \\ \left\langle \ell', s', j', m'_{j} \left| \hat{J}_{z} \right| \ell, s, j, m_{j} \right\rangle &= m_{j} \delta_{\ell\ell'} \delta_{ss'} \delta_{jj'} \delta_{m_{j}m'_{j}} \end{split}$$

In which $\vec{J} = \vec{L} + \vec{S}$, and

$$\hat{J}^2 = \hat{J}_x^2 + \hat{J}_y^2 + \hat{J}_z^2 = \hat{L}^2 + \hat{S}^2 + 2\hat{L}.\hat{S} = \hat{L}^2 + \hat{S}^2 + 2\hat{L}_z\hat{S}_z + \hat{L}_+\hat{S}_- + \hat{L}_-\hat{S}_+,$$

Note that $|\ell, s, j, m_j\rangle$ are not eigenfunctions of \hat{L}_z or \hat{S}_z . $|\ell, s, j, m_j\rangle$ are said to be in the coupled representation.

$$\begin{split} \hat{L}_{y} &= (\hat{L}_{+} - \hat{L}_{-})/2i \;, \quad \hat{L}_{x} = (\hat{L}_{+} + \hat{L}_{-})/2 \\ \hat{L}_{-}\hat{L}_{+} &= \hat{L}^{2} - \hat{L}_{z}^{2} - \hbar \hat{L}_{z} \\ \hat{L}_{+}\hat{L}_{-} &= \hat{L}^{2} - \hat{L}_{z}^{2} + \hbar \hat{L}_{z} \\ \hat{L}_{\pm} &| l , m \rangle = \hbar \sqrt{l (l+1) - m (m \pm 1)} | l , m \pm 1 \rangle \\ \hat{L}_{\pm} &\equiv \hat{L}_{x} \pm i \hat{L}_{y} = \pm \hbar e^{\pm i \varphi} \left[\frac{\partial}{\partial \theta} \pm i \frac{\cos \theta}{\sin \theta} \frac{\partial}{\partial \phi} \right] \\ \hat{L}_{z} &= -i \hbar \frac{\partial}{\partial \phi} \\ \hat{L}^{2} &= -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] \end{split}$$

$$\begin{split} \hat{J}_{\pm} &= \hat{J}_{x} \pm i \hat{J}_{y} \\ \hat{J}^{2} &= \hat{J}_{x}^{2} + \hat{J}_{y}^{2} + \hat{J}_{z}^{2} = \hat{L}^{2} + \hat{S}^{2} + 2\hat{L}.\hat{S} = \hat{L}^{2} + \hat{S}^{2} + 2\hat{L}_{z}\hat{S}_{z} + \hat{L}_{+}\hat{S}_{-} + \hat{L}_{-}\hat{S}_{+} \\ \left[\hat{J}_{x}, \hat{J}_{y}\right] &= i\hbar \hat{J}_{z}, \quad \left[\hat{J}_{y}, \hat{J}_{z}\right] = i\hbar \hat{J}_{x}, \quad \left[\hat{J}_{z}, \hat{J}_{x}\right] = i\hbar \hat{J}_{y} \Rightarrow \hat{J} \times \hat{J} = i\hbar \hat{J} \\ \hat{J}^{2} \mid j, m_{j} > &= \hbar^{2} j(j+1) \mid j, m_{j} > \\ \hat{J}_{z} \mid j, m_{j} > &= m_{j} \hbar \mid j, m_{j} >; \quad \hat{J}_{z}^{2} \mid j, m_{j} > &= m_{j}^{2} \hbar \mid j, m_{j} > \\ \hat{J}_{z} \mid j, m_{j} > &= \hbar \sqrt{j(j+1) - m_{j}(m_{j} \pm 1)} \mid j, m_{j} \pm 1 > \\ \left[\hat{J}_{+}, \hat{J}_{-}\right] &= 2\hbar \hat{J}_{z}, \quad \left[\hat{J}_{z}, \hat{J}_{-}\right] = -\hbar \hat{J}_{-}, \quad \left[\hat{J}_{z}, \hat{J}_{+}\right] = \hbar \hat{J}_{+} \\ \left[\hat{J}^{2}, \hat{J}_{+}\right] &= \left[\hat{J}^{2}, \hat{J}_{-}\right] = \left[\hat{J}^{2}, \hat{J}_{x}\right] = \left[\hat{J}^{2}, \hat{J}_{y}\right] = \left[\hat{J}^{2}, \hat{J}_{z}\right] = 0, \end{split}$$

Addition of Angular momentum

1- Two spin $\frac{1}{2}$ particles

Let $\hat{\mathbf{S}}_1$ and $\hat{\mathbf{S}}_2$ denote spin operators of two different electrons (or neutrons and protons). Then, there are 4 independent states.

$$|s_{1z}, s_{2z}\rangle = |\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle$$

where
$$|\uparrow\rangle = |s = \frac{1}{2}, s_z = \frac{1}{2}\rangle$$
 and $|\downarrow\rangle = |s = \frac{1}{2}, s_z = -\frac{1}{2}\rangle \Rightarrow |\uparrow\uparrow\rangle = |s_1, s_2, s_{1z}, s_{2z}\rangle = |\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\rangle$

These eigenstates are direct product of $\chi^{\uparrow}(1)$, $\chi^{\downarrow}(1)$, $\chi^{\uparrow}(2)$, $\chi^{\downarrow}(2)$ which are eigenstates of \hat{S}_{1}^{2} , \hat{S}_{2}^{2} , \hat{S}_{1z} , and \hat{S}_{2z} .

Example)
$$|\uparrow\uparrow\rangle = \chi^{\uparrow}(1)\chi^{\uparrow}(2)$$

$$\Rightarrow \hat{S_{1z}}|\uparrow\uparrow\rangle = \frac{\hbar}{2}|\uparrow\uparrow\rangle, \ \hat{S_{2z}}|\uparrow\uparrow\rangle = \frac{\hbar}{2}|\uparrow\uparrow\rangle, \ \hat{S_{1}^{2}}|\uparrow\uparrow\rangle = \frac{3}{4}\hbar^{2}|\uparrow\uparrow\rangle, \ \hat{S_{2}^{2}}|\uparrow\uparrow\rangle = \frac{3}{4}\hbar^{2}|\uparrow\uparrow\rangle$$

We can also consider the total spin $\hat{\mathbf{S}}$ of the two electron system. $\hat{\mathbf{S}} = \hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2$

Since $[\hat{\mathbf{S}}_1, \hat{\mathbf{S}}_2] = 0$ (because they act on different particles), we see that \hat{S}_i , \hat{S}_j , and \hat{S}_k satisfy the angular momentum commutator relation.

$$\begin{split} &[\hat{S}_i, \hat{S}_j] = [\hat{S}_{1i} + \hat{S}_{2i}, \hat{S}_{1j} + \hat{S}_{2j}] = [\hat{S}_{1i}, \hat{S}_{1j}] + [\hat{S}_{2i}, \hat{S}_{2j}] = i\hbar \varepsilon_{ijk} \hat{S}_{1k} + i\hbar \varepsilon_{ijk} \hat{S}_{2k} \\ &\Rightarrow \boxed{[\hat{S}_i, \hat{S}_j] = i\hbar \varepsilon_{ijk} \hat{S}_k} \end{split}$$

Hence it follows that $[\hat{S}^2, \hat{S}_z] = 0$ and we can construct simultaneous eigenstates of \hat{S}^2 and \hat{S}_z (total angular momentum magnitude and its z-component) $|s, s_z\rangle$ where $s_z = -s, -s + 1, \dots, s - 1, s$

The problem is

- (i) What are possible eigenstates of \hat{S}^2 and \hat{S}_z ?
- (ii) How can we construct the eigenstate $|s, s_z\rangle$ in terms of the 4 basis states $(|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle)$?

First, note that 4 basis states are eigenstates of $\hat{S}_z = \hat{S}_{1z} + \hat{S}_{2z}$.

$$\hat{S}_{z}|\uparrow\uparrow\rangle = (\hat{S}_{1z} + \hat{S}_{2z})|\uparrow\uparrow\rangle = \frac{\hbar}{2}|\uparrow\uparrow\rangle + \frac{\hbar}{2}|\uparrow\uparrow\rangle = \hbar|\uparrow\uparrow\rangle
\hat{S}_{z}|\uparrow\downarrow\rangle = (\hat{S}_{1z} + \hat{S}_{2z})|\uparrow\downarrow\rangle = \frac{\hbar}{2}|\uparrow\downarrow\rangle - \frac{\hbar}{2}|\uparrow\downarrow\rangle = 0|\uparrow\downarrow\rangle
\hat{S}_{z}|\downarrow\uparrow\rangle = (\hat{S}_{1z} + \hat{S}_{2z})|\downarrow\uparrow\rangle = -\frac{\hbar}{2}|\downarrow\uparrow\rangle + \frac{\hbar}{2}|\downarrow\uparrow\rangle = 0|\downarrow\uparrow\rangle
\hat{S}_{z}|\downarrow\downarrow\rangle = (\hat{S}_{1z} + \hat{S}_{2z})|\downarrow\downarrow\rangle = -\frac{\hbar}{2}|\downarrow\downarrow\rangle - \frac{\hbar}{2}|\downarrow\downarrow\rangle = -\hbar|\downarrow\downarrow\rangle$$

Possible eigenvalues of \hat{S}_z are $0, \hbar, 0, -\hbar$. But these direct product states are not eigenstates of \hat{S}^2 in general.

$$\hat{S}^2 = (\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2)^2 = \hat{S}_1^2 + \hat{S}_2^2 + 2\hat{\mathbf{S}}_1 \cdot \hat{\mathbf{S}}_2 = \hat{S}_1^2 + \hat{S}_2^2 + 2(\hat{S}_{1x}\hat{S}_{2x} + \hat{S}_{1y}\hat{S}_{2y} + \hat{S}_{1z}\hat{S}_{2z})$$

Alternative way to get eigenstates of \hat{S}^2 and \hat{S}_z

In order to obtain eigenstates of \hat{S}^2 and \hat{S}_z , using $\{|\uparrow\uparrow\rangle,|\uparrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\downarrow\downarrow\rangle\}$ as basis state, you can construct and diagonalize the corresponding matrices of \hat{S}^2 and \hat{S}_z .

$$\begin{split} \hat{S}^2 &= \hat{S}_1^2 + \hat{S}_2^2 + (\hat{S}_{1+}\hat{S}_{2-} + \hat{S}_{1-}\hat{S}_{2+}) + 2\hat{S}_{1z}\hat{S}_{2z} \\ &\hat{S}^2 |\uparrow\uparrow\rangle = (\frac{3}{4}\hbar^2 + \frac{3}{4}\hbar^2)|\uparrow\uparrow\rangle + 0 + 0 + 2\frac{\hbar}{2}\frac{\hbar}{2}|\uparrow\uparrow\rangle = 2\hbar^2|\uparrow\uparrow\rangle \\ &\hat{S}^2 |\uparrow\downarrow\rangle = (\frac{3}{4}\hbar^2 + \frac{3}{4}\hbar^2)|\uparrow\downarrow\rangle + 0 + \hbar^2|\uparrow\downarrow\rangle + 2\frac{\hbar}{2}(-\frac{\hbar}{2})|\uparrow\downarrow\rangle = \hbar^2(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \\ &\hat{S}^2 |\downarrow\uparrow\rangle = (\frac{3}{4}\hbar^2 + \frac{3}{4}\hbar^2)|\downarrow\uparrow\rangle + \hbar^2|\downarrow\uparrow\rangle + 0 + 2(-\frac{\hbar}{2})\frac{\hbar}{2}|\downarrow\uparrow\rangle = \hbar^2(|\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle) \\ &\hat{S}^2 |\downarrow\downarrow\rangle = = 2\hbar^2|\downarrow\downarrow\rangle \end{split}$$

Then, matrix corresponding to \hat{S}^2

$$\hat{S}^2 = \begin{pmatrix} 2\hbar^2 & 0 & 0 & 0 \\ 0 & \hbar^2 & \hbar^2 & 0 \\ 0 & \hbar^2 & \hbar^2 & 0 \\ 0 & 0 & 0 & 2\hbar^2 \end{pmatrix} \Rightarrow |\hat{S}^2 - \lambda \hat{1}| = 0$$

Diagonalization: eigenvalue and eigenvector

(i) eigenvalue:
$$2\hbar^2$$
, eigenvector: $\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$ (ii) eigenvalue: $2\hbar^2$, eigenvector: $\begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$

Diagonalize
$$\hbar^2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow \begin{vmatrix} 1 - \lambda & 1 \\ 1 & 1 - \lambda \end{vmatrix} = 0 \Rightarrow (1 - \lambda)^2 = 1 \Rightarrow \lambda = 2, 0$$

(iii) eigenvalue:
$$2\hbar^2$$
, eigenvector: $\frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}$ (iv) eigenvalue: 0, eigenvector: $\frac{1}{\sqrt{2}}\begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}$

Therefore, we have two basis sets and the transformation between them are given as follows.

Uncoupled representation:

$$|s_1^2,s_2^2,s_{1z},s_{2z}\rangle=|\uparrow\uparrow\rangle,|\uparrow\downarrow\rangle,|\downarrow\uparrow\rangle,|\downarrow\downarrow\rangle$$

Coupled representation:

$$|s^{2}, s_{z}, s_{1}^{2}, s_{2}^{2}\rangle = \begin{cases} & \text{triplet states} & \text{singlet state} \\ & |1, 1\rangle = |\uparrow\uparrow\rangle \\ & |1, 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) & |0, 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \\ & |1, -1\rangle = |\downarrow\downarrow\rangle \end{cases}$$

Prof. Dr. *I. Nasser* Spin31.doc

Phys- 551 (T-112)

October 31, 2013

$$\hat{s}_{iz} | s_i m_i \rangle = m_i \hbar | s_i m_i \rangle
\hat{s}_i^2 | s_i m_i \rangle = s_i (s_i + 1) \hbar^2 | s_i m_i \rangle , \quad i = 1, 2$$

$$| s_1 m_1 s_2 m_2 \rangle \equiv | s_1 m_1 \rangle | s_2 m_2 \rangle$$
(II)

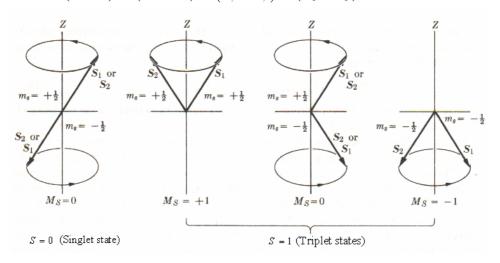
$$s_1 = s_2 = \frac{1}{2}$$

$$\hat{s}_{1z} | s_1 m_1 s_2 m_2 \rangle = m_1 \hbar | s_1 m_1 s_2 m_2 \rangle
\hat{s}_1^2 | s_1 m_1 s_2 m_2 \rangle = s_1 (s_1 + 1) \hbar^2 | s_1 m_1 s_2 m_2 \rangle
\hat{s}_{2z} | s_1 m_1 s_2 m_2 \rangle = m_2 \hbar | s_1 m_1 s_2 m_2 \rangle
\hat{s}_2^2 | s_1 m_1 s_2 m_2 \rangle = s_2 (s_2 + 1) \hbar^2 | s_1 m_1 s_2 m_2 \rangle$$
(III)

$$\hat{s}_{z} |s_{1}m_{1}s_{2}m_{2}\rangle = (\hat{s}_{1z} + \hat{s}_{2z})|s_{1}m_{1}s_{2}m_{2}\rangle
= (\hat{s}_{1z} |s_{1}m_{1}\rangle)|s_{2}m_{2}\rangle + (\hat{s}_{2z} |s_{2}m_{2}\rangle)|s_{1}m_{1}\rangle
= \hbar \left[(m_{1}|s_{1}m_{1}\rangle)|s_{2}m_{2}\rangle + (m_{2}|s_{2}m_{2}\rangle)|s_{1}m_{1}\rangle \right]
= (m_{1} + m_{2})\hbar|s_{1}m_{1}s_{2}m_{2}\rangle
= m\hbar|s_{1}m_{1}s_{2}m_{2}\rangle$$
(IV)

$$m = m_1 + m_2$$

$$\hat{s}^2 = (\hat{s}_1 + \hat{s}_2)^2 = (\hat{s}_{1x} + \hat{s}_{2x})^2 + (\hat{s}_{1y} + \hat{s}_{2y})^2 + (\hat{s}_{1z} + \hat{s}_{2z})^2$$
(V)



$$\chi_{S} = \begin{cases} |11\rangle &= |\alpha\rangle_{1} |\alpha\rangle_{2} \\ |10\rangle &= \frac{1}{\sqrt{2}} \left[|\beta\rangle_{1} |\alpha\rangle_{2} + |\alpha\rangle_{1} |\beta\rangle_{2} \right] \end{cases} \text{ triplet states (Symmetric, Ortho or Even)}$$

$$|1-1\rangle = |\beta\rangle_{1} |\beta\rangle_{2}$$

$$\chi_A = |00\rangle = \frac{1}{\sqrt{2}} [|\beta\rangle_1 |\alpha\rangle_2 - |\alpha\rangle_1 |\beta\rangle_2]$$
 singlet states (Antisymmetric, Para or Odd)

Phys- 551 (T-112)

$$\begin{split} \hat{S_{z}} \sqrt{\frac{1}{2}} \left(\alpha_{1} \beta_{2} - \beta_{1} \alpha_{2} \right) &= \sqrt{\frac{1}{2}} \left(\hat{s}_{1z} + \hat{s}_{2z} \right) \left(\alpha_{1} \beta_{2} - \beta_{1} \alpha_{2} \right) \\ &= \sqrt{\frac{1}{2}} \left[\beta_{2} \left(\hat{s}_{1z} \alpha_{1} \right) - \alpha_{2} \left(\hat{s}_{1z} \beta_{1} \right) + \alpha_{1} \left(\hat{s}_{2z} \beta_{2} \right) - \beta_{1} \left(\hat{s}_{2z} \alpha_{2} \right) \right] \\ &= \hbar \sqrt{\frac{1}{2}} \left(\frac{1}{2} \beta_{2} \alpha_{1} + \frac{1}{2} \alpha_{2} \beta_{1} - \frac{1}{2} \alpha_{1} \beta_{2} - \frac{1}{2} \beta_{1} \alpha_{2} \right) = 0 \end{split}$$

H.W.

$$\hat{S}^{2} = (\hat{s}_{1} + \hat{s}_{2})^{2} = \hat{s}_{1}^{2} + \hat{s}_{2}^{2} + 2\hat{s}_{1} \cdot \hat{s}_{2} = \hat{s}_{1}^{2} + \hat{s}_{2}^{2} + 2\left[\hat{s}_{1z}\hat{s}_{2z} + \frac{1}{2}(\hat{s}_{+1}\hat{s}_{-2} + \hat{s}_{-1}\hat{s}_{+2})\right]$$

$$= \hat{s}_{1}^{2} + \hat{s}_{2}^{2} + 2\hat{s}_{1z}\hat{s}_{2z} + (\hat{s}_{+1}\hat{s}_{-2} + \hat{s}_{-1}\hat{s}_{+2})$$

H.W. check the following

$$\hat{S}^{2}\psi = 0 \,\psi, \quad \psi = \sqrt{\frac{1}{2}} \left(\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2} \right)$$

$$\hat{s}_{1}^{2}\psi = \frac{3}{4}\psi, \quad \hat{s}_{2}^{2}\psi = \frac{3}{4}\psi, \quad 2\hat{s}_{1z}\hat{s}_{2z}\psi = 2\left(-\frac{1}{4}\right)\psi$$

$$\hat{s}_{+1}\hat{s}_{-2}\sqrt{\frac{1}{2}} \left(\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2} \right) = \sqrt{\frac{1}{2}} \left(0 - \alpha_{1}\beta_{2} \right)$$

$$\hat{s}_{-1}\hat{s}_{+2}\sqrt{\frac{1}{2}} \left(\alpha_{1}\beta_{2} - \beta_{1}\alpha_{2} \right) = \sqrt{\frac{1}{2}} \left(\beta_{1}\alpha_{2} - 0 \right)$$

$$\hat{S}^{2} \sqrt{\frac{1}{2}} (\alpha_{1} \beta_{2} + \beta_{1} \alpha_{2}) = 1(1+1)\hbar^{2} \sqrt{\frac{1}{2}} (\alpha_{1} \beta_{2} + \beta_{1} \alpha_{2}),$$

$$\hat{S}_{z} \sqrt{\frac{1}{2}} (\alpha_{1} \beta_{2} + \beta_{1} \alpha_{2}) = 0\hbar \sqrt{\frac{1}{2}} (\alpha_{1} \beta_{2} + \beta_{1} \alpha_{2})$$

Q: What is the configuration for the p-orbital ($\ell = 1$) for the electron in the Hydrogen atom in LSJ-coupling scheme?

Answer: The wave function of the Hydrogen atom can be given by:

$$\Psi_{total} \equiv R_{n\ell}(r) Y_{\ell,m_{\ell}}(\theta,\varphi) \chi_{\pm} = \left| n, \ell, m_{\ell} \right\rangle \left| s, m_{s} \right\rangle = \left| n, \ell, m_{\ell}, s, m_{s} \right\rangle = \left| n, \ell, s, j, m_{j} \right\rangle$$

$$\text{Where } \left| \ell = 1, s = \frac{1}{2}, j = 1 \pm \frac{1}{2}, m_{j} = j, j - 1, \dots, -j \right\rangle.$$

Here we have two cases;

First case at:

$$j_{\text{max}} = \ell + s = 1 + \frac{1}{2} = \frac{3}{2} \implies m_j = \frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{3}{2}$$

And it has four degenerate states.

Second case at:

$$j_{\min} = \ell - s = 1 - \frac{1}{2} = \frac{1}{2} \implies m_j = \frac{1}{2}, -\frac{1}{2}$$

And it has two degenerate states.

Start with the highest value $j_{\text{max}} = \frac{3}{2}$, so

coupled uncoupled
$$\left|j, m_{j}\right\rangle = \left|m_{\ell}, m_{s}\right\rangle$$
 $\left|\frac{3}{2}\frac{3}{2}\right\rangle' = Y_{1,1}\alpha = \left|1, \frac{1}{2}\right\rangle$

Using the relation: $\hat{J}_{\pm} | j, m_j \rangle = \hbar \sqrt{j(j+1) - m_j(m_j \pm 1)} | j, m_j \pm 1 \rangle$, one finds in the coupled representation:

$$\hat{J}_{-} \left| \frac{3}{2}, \frac{3}{2} \right\rangle' = (\hat{L}_{-} + \hat{S}_{-}) \left| 1, \frac{1}{2} \right\rangle$$
 (*)

LHS of (*) implies:

$$\hat{J}_{-} \left| \frac{3}{2}, \frac{3}{2} \right\rangle' = \left[\frac{3}{2} (\frac{3}{2} + 1) - \frac{3}{2} (\frac{3}{2} - 1) \right]^{1/2} \left| \frac{3}{2}, \frac{1}{2} \right\rangle' = \sqrt{3} \left| \frac{3}{2}, \frac{1}{2} \right\rangle' \tag{A}$$

And the RHS of (*) implies:

$$\left(\hat{L}_{-} + \hat{S}_{-}\right) \left| 1, \frac{1}{2} \right\rangle = \hat{L}_{-} \left| 1, \frac{1}{2} \right\rangle + \hat{S}_{-} \left| 1, \frac{1}{2} \right\rangle
= \left[1(1+1) - 1(1-1) \right]^{1/2} \left| 0, \frac{1}{2} \right\rangle + \left[\frac{1}{2} (\frac{1}{2} + 1) - \frac{1}{2} (\frac{1}{2} - 1) \right]^{1/2} \left| 1, -\frac{1}{2} \right\rangle = \sqrt{2} \left| 0, \frac{1}{2} \right\rangle + 1 \left| 1, -\frac{1}{2} \right\rangle$$
(B)

Equate the equations (A) and (B), we have:

$$\left|\frac{3}{2},\frac{1}{2}\right\rangle' = \sqrt{\frac{2}{3}}\left|0,\frac{1}{2}\right\rangle + \sqrt{\frac{1}{3}}\left|1,-\frac{1}{2}\right\rangle = \sqrt{\frac{2}{3}}Y_{1,0}\alpha + \sqrt{\frac{1}{3}}Y_{1,1}\beta$$

What is the last equation mean? The last equation indicates that the eigen state $|j, m_j\rangle$ is a linear combination of the eigen states $|l, s\rangle |m_l, m_s\rangle$.

Check your expression:
$$\frac{\left|\frac{3}{2},\frac{1}{2}\right\rangle}{\left|j,m_{j}\right\rangle} = \underbrace{\sqrt{\frac{2}{3}}}_{C_{1}} \underbrace{\left|0,\frac{1}{2}\right\rangle}_{C_{1}} + \underbrace{\sqrt{\frac{1}{3}}}_{C_{2}} \underbrace{\left|1,-\frac{1}{2}\right\rangle}_{C_{2}} = \sqrt{\frac{2}{3}} \boldsymbol{Y}_{1,0} \boldsymbol{\alpha} + \sqrt{\frac{1}{3}} \boldsymbol{Y}_{1,1} \boldsymbol{\beta}$$
Is $c_{1}^{2} + c_{2}^{2} = 1$? Is $J = L + s$? Is $m_{i} = m_{i} + m_{s}$?

H.W. Prove the following

$$\left| \frac{3}{2}, -\frac{1}{2} \right\rangle' = \sqrt{\frac{1}{3}} \left| -1, \frac{1}{2} \right\rangle + \sqrt{\frac{2}{3}} \left| 0, -\frac{1}{2} \right\rangle = \sqrt{\frac{1}{3}} Y_{1,-1} \alpha + \sqrt{\frac{2}{3}} Y_{1,0} \beta$$

$$\left| \frac{3}{2}, -\frac{3}{2} \right\rangle' = \left| -1, -\frac{1}{2} \right\rangle = Y_{1,-1} \beta$$

These are the last two states for the value $j_{\text{max}} = \frac{3}{2}$. Note that the degeneracy is $d_{3/2} = 2 \times \frac{3}{2} + 1 = 4$

For the second case, start with the maximum one, $\left|\frac{1}{2},\frac{1}{2}\right\rangle'$, with $j_{\min} = \frac{1}{2}$ and we will suppose that it take the linear combination form:

$$\left|\frac{1}{2},\frac{1}{2}\right\rangle' = c_1 \left|0,\frac{1}{2}\right\rangle + c_2 \left|1,-\frac{1}{2}\right\rangle = c_1 Y_{1,0} \alpha + c_2 Y_{1,1} \beta$$

From the normalization we have

$$\left| \left\langle \frac{1}{2}, \frac{1}{2} \right| \frac{1}{2}, \frac{1}{2} \right\rangle \right| = \left| c_1 \right|^2 + \left| c_2 \right|^2 = 1$$

And from the orthogonality with the state $\left|\frac{3}{2},\frac{1}{2}\right\rangle'$ we have

$$\left(\frac{3}{2}, \frac{1}{2} \middle| \frac{1}{2}, \frac{1}{2} \right) = \sqrt{\frac{2}{3}} c_1 + \sqrt{\frac{1}{3}} c_2 = 0 \implies c_2 = -\sqrt{2} c_1$$

From both, we have

$$c_1 = \pm \sqrt{\frac{1}{3}}$$

Finally, we reach the relation:

$$\left| \frac{1}{2}, \frac{1}{2} \right\rangle' = -\sqrt{\frac{1}{3}} \left| 0, \frac{1}{2} \right\rangle + \sqrt{\frac{2}{3}} \left| 1, -\frac{1}{2} \right\rangle = -\sqrt{\frac{1}{3}} Y_{1,0} \alpha + \sqrt{\frac{2}{3}} Y_{1,1} \beta$$

Using the lowering operator, we can have:

$$\left|\frac{1}{2}, -\frac{1}{2}\right\rangle' = \sqrt{\frac{1}{3}}\left|0, -\frac{1}{2}\right\rangle - \sqrt{\frac{2}{3}}\left|-1, \frac{1}{2}\right\rangle = \sqrt{\frac{1}{3}}Y_{1,0}\beta - \sqrt{\frac{2}{3}}Y_{1,-1}\alpha$$

Suppose we measure S_z on a system in some state $\left|\chi\right> = \begin{pmatrix} a \\ b \end{pmatrix}$. Postulate 2 says that the possible results of this measurement are one of the S_z eigenvalues: $+\hbar/2$ or $-\hbar/2$. Postulate 3 says the probability of finding, say $-\hbar/2$, is $\operatorname{Prob}(\operatorname{find} - \hbar/2) = \left|\left\langle \downarrow \mid \chi \right\rangle\right|^2 = \left|\left(0 - 1\right) \begin{pmatrix} a \\ b \end{pmatrix}\right|^2 = \left|b\right|^2$. Postulate 4 says that, as a result of this measurement, which found $-\hbar/2$, the initial state $\left|\chi\right>$ collapses to $\left|\downarrow\right>$.

But suppose we measure S_x ? (Which we can do by rotating the SG apparatus.) What will we find? Answer: one of the eigenvalues of S_x , which we show below are the same as the eigenvalues of S_z : $+\hbar/2$ or $-\hbar/2$. (Not surprising, since there is nothing special about the z-axis.) What is the probability that we find, say, $S_x = +\hbar/2$? To answer this we need to know the eigenstates of the S_x operator. Let's call these (so far unknown) eigenstates $\left|\uparrow^{(x)}\right\rangle$ and $\left|\downarrow^{(x)}\right\rangle$ (Griffiths calls them $\left|\chi_{_+}^{(x)}\right\rangle$ and $\left|\chi_{_-}^{(x)}\right\rangle$). How do we find these?

Answer: We must solve the eigenvalue equation:

$$S_{x}|\chi\rangle = \lambda|\chi\rangle$$
,

where λ_{\cdot} are the unknown eigenvalues. In matrix form $(\hat{S}_x) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and

$$\begin{pmatrix} \hat{S}_x \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix}$$
 which gives,
$$\begin{pmatrix} 0 & \hbar/2 \\ \hbar/2 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \lambda \begin{pmatrix} a \\ b \end{pmatrix}$$
 which can be rewritten as
$$\begin{pmatrix} -\lambda & \hbar/2 \\ \hbar/2 & -\lambda \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = 0$$
.

In linear algebra, this last equation is called the characteristic equation.

This system of linear equations only has a solution if $\operatorname{Det}\begin{pmatrix} -\lambda & \hbar/2 \\ \hbar/2 & -\lambda \end{pmatrix} = \begin{vmatrix} -\lambda & \hbar/2 \\ \hbar/2 & -\lambda \end{vmatrix} = 0$. So $\lambda^2 - (\hbar/2)^2 = 0 \implies \lambda = \pm \hbar/2$

As expected, the eigenvalues of S_x are the same as those of S_z (or S_y).

Now we can plug in each eigenvalue and solve for the eigenstates:

So we have
$$\left| \uparrow^{(x)} \right\rangle = \frac{\hbar}{2} \begin{pmatrix} a \\ b \end{pmatrix} \implies a = b$$
; $\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = -\frac{\hbar}{2} \begin{pmatrix} a \\ b \end{pmatrix} \implies a = -b$.

Now back to our question: Suppose the system in the state $\left|\uparrow^{(z)}\right\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$, and we measure S_x . What is the probability that we find, say, $S_x = +\hbar/2$? Postulate 3 gives the recipe for the answer:

Prob(find
$$S_x = +\hbar/2$$
) = $\left|\left\langle \uparrow^{(x)} \mid \uparrow^{(z)} \right\rangle\right|^2 = \left|\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right|^2 = \left|\frac{1}{\sqrt{2}} \right|^2 = 1/2$

Question for the student: Suppose the initial state is an arbitrary state $\left|\chi\right> = \begin{pmatrix} a \\ b \end{pmatrix}$ and we measure S_x .

What are the probabilities that we find $S_x = +\hbar/2$ and $-\hbar/2$?

Let's review the strangeness of Quantum Mechanics.

Suppose an electron is in the $S_x = +\hbar/2$ eigenstate $\left|\uparrow^{(x)}\right\rangle = \frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix}$. If we ask: What is the value of S_x ?

Then there is a definite answer: $+\hbar/2$. But if we ask: What is the value of S_z , then this is no answer. The system *does not possess* a value of S_z . If we measure S_z , then the act of measurement will produce a definite result and will force the state of the system to collapse into an eigenstate of S_z , but that very act of measurement will destroy the definiteness of the value of S_z . The system can be in an eigenstate of either S_z or S_z , but not both.

HW Check the following:

$ \hat{\left(\hat{S}_z\right)} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $	Eigen-values	symbol	Eigen states
	$\frac{\hbar}{2}$	+>	$\frac{1}{\sqrt{2}} \binom{1}{0}$
	$-\frac{\hbar}{2}$	->	$\frac{1}{\sqrt{2}} \binom{0}{1}$

$(\hat{S}_x) = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	Eigen-values	symbol	Eigen states
$\begin{pmatrix} 0 & x \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \end{pmatrix}$	$\frac{\hbar}{2}$	$ +_x\rangle$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
			$=\frac{1}{\sqrt{2}}\{\alpha+\beta\}$
	$-\frac{\hbar}{2}$	$\left {x}\right\rangle$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
			$=\frac{1}{\sqrt{2}}\{\alpha-\beta\}$

$\left(\hat{S}_{y}\right) = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$	Eigen-values	symbol	Eigen states
-(1 0)	$\frac{\hbar}{2}$	+ _y	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} = \frac{1}{\sqrt{2}} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
			$=\frac{1}{\sqrt{2}}\{\alpha+i\beta\}$
	$-\frac{\hbar}{2}$	$\left {y}\right\rangle$	$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -i \end{pmatrix} = \frac{1}{\sqrt{2}} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} - i \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$
			$=\frac{1}{\sqrt{2}}\{\alpha-i\beta\}$

EXAMPLE 11.4 e.g.

A particle is in the state

$$|\psi\rangle = \frac{1}{\sqrt{5}} \begin{pmatrix} 2\\i \end{pmatrix}$$

Find the probabilities of

- (a) Measuring spin-up or spin-down in the z direction.
- (b) Measuring spin-up or spin-down in the y direction.

SOLUTION V

(a) First we expand the state in the standard basis $|\pm\rangle$:

$$|\psi\rangle = \frac{1}{\sqrt{5}} \binom{2}{i} = \frac{1}{\sqrt{5}} \binom{2}{0} + \frac{1}{\sqrt{5}} \binom{0}{i} = \frac{2}{\sqrt{5}} \binom{1}{0} + \frac{i}{\sqrt{5}} \binom{0}{1} = \frac{2}{\sqrt{5}} |+\rangle + \frac{i}{\sqrt{5}} |-\rangle$$

The Born rule determines the probability of measuring spin-up in the zdirection, which is found from computing $|\langle + | \psi \rangle|^2$. In this case we have

$$|\langle + | \psi \rangle|^2 = \left| \frac{2}{\sqrt{5}} \right|^2 = \frac{4}{5} = 0.8$$

Application of the Born rule allows us to find the probability of measuring spin-down

$$|\langle -|\psi\rangle|^2 = \left|\frac{i}{\sqrt{5}}\right|^2 = \left(\frac{-i}{\sqrt{5}}\right)\left(\frac{i}{\sqrt{5}}\right) = \frac{1}{5} = 0.2$$

Notice that the probabilities sum to one, as they should.

(b) To find the probabilities of finding spin-up/down along the y-axis, we can use the relationship we derived earlier that allows us to express a state written in the $|\pm\rangle$ in the S_{ν} states. We restate this relationship here:

$$\begin{aligned} |\psi\rangle &= \alpha |+\rangle + \beta |-\rangle = \alpha \left(\frac{|+y\rangle + |-y\rangle}{\sqrt{2}} \right) + \beta \left(\frac{-i |+y\rangle + i |-y\rangle}{\sqrt{2}} \right) \\ &= \left(\frac{\alpha - i\beta}{\sqrt{2}} \right) |+y\rangle + \left(\frac{\alpha + i\beta}{\sqrt{2}} \right) |-y\rangle \end{aligned}$$

For the state in this problem, we find

$$|\psi\rangle = \frac{2}{\sqrt{5}}|+\rangle + \frac{i}{\sqrt{5}}|-\rangle = \frac{1}{\sqrt{2}}\left(\frac{2}{\sqrt{5}} + \frac{1}{\sqrt{5}}\right)|+_y\rangle + \frac{1}{\sqrt{2}}\left(\frac{2}{\sqrt{5}} - \frac{1}{\sqrt{5}}\right)|-_y\rangle$$
$$= \frac{3}{\sqrt{10}}|+_y\rangle + \frac{1}{\sqrt{10}}|-_y\rangle$$

Therefore the probability of measuring spin-up along the y-direction is

$$|\langle +_y | \psi \rangle|^2 = \left(\frac{3}{\sqrt{10}}\right)^2 = \frac{9}{10} = 0.9$$

and the probability of finding spin-down is

$$|\langle -y \mid \psi \rangle|^2 = \left(\frac{1}{\sqrt{10}}\right)^2 = \frac{1}{10} = 0.1$$

EXAMPLE 11.5

A spin-1/2 system is in the state

$$|\psi\rangle = \frac{1+i}{\sqrt{3}} |+\rangle + \frac{1}{\sqrt{3}} |-\rangle$$

- (a) If spin is measured in the z-direction, what are the probabilities of fin $\pm h/2$?
- (b) If instead, spin is measured in the x-direction, what is the probability of fin spin-up?
- (c) Calculate $\langle S_z \rangle$ and $\langle S_x \rangle$ for this state.

SOLUTION

(a) The probability of finding $+\hbar/2$ is found from the Born rule, and so calculate

$$|\langle + | \psi \rangle|^2 = \left| \frac{1+i}{\sqrt{3}} \right|^2 = \left(\frac{1+i}{\sqrt{3}} \right) \left(\frac{1-i}{\sqrt{3}} \right) = \frac{2}{3}$$

The probability of finding $-\hbar/2$ is given by

$$|\langle - | \psi \rangle|^2 = \left| \frac{1}{\sqrt{3}} \right|^2 = \frac{1}{3}$$

(b) In the chapter quiz, you will show that

$$|+_x\rangle = \frac{|+\rangle + |-\rangle}{\sqrt{2}}$$

From the Born rule, the probability of finding spin up in the x-direction is $|\langle +_x \mid \psi \rangle|^2$. Now

$$\begin{split} \langle +_{\lambda} \mid \psi \rangle &= \left(\frac{\langle + \mid + \langle - \mid}{\sqrt{2}} \right) \left(\frac{1+i}{\sqrt{3}} \mid + \rangle + \frac{1}{\sqrt{3}} \mid - \rangle \right) \\ &= \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1+i}{\sqrt{3}} \right) \langle + \mid + \rangle + \left(\frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{3}} \right) \langle - \mid - \rangle \\ &= \frac{2+i}{6} \end{split}$$

Therefore the probability is

$$|\langle +_x \mid \psi \rangle|^2 = \left(\frac{2-i}{6}\right) \left(\frac{2+i}{6}\right) = \frac{5}{6}$$

(Exercise: Calculate $|\langle -x | \psi \rangle|^2$ and verify the probabilities sum to one.)

Prof. Dr. *I. Nasser* Spin31.doc

Phys- 551 (T-112)

October 31, 2013

(c) The expectation values are given by

$$\begin{split} S_z \mid \psi \rangle &= \left(\frac{1+i}{\sqrt{3}}\right) S_z \mid + \rangle + \frac{1}{\sqrt{3}} S_z \mid - \rangle = \frac{\hbar}{2} \left[\left(\frac{1+i}{\sqrt{3}}\right) \mid + \rangle - \frac{1}{\sqrt{3}} \mid - \rangle \right] \\ \Rightarrow \\ \langle S_z \rangle &= \langle \psi \mid S_z \mid \psi \rangle = \frac{\hbar}{2} \left[\left(\frac{1-i}{\sqrt{3}}\right) \langle + \mid + \frac{1}{\sqrt{3}} \langle - \mid \right] \left[\left(\frac{1+i}{\sqrt{3}}\right) \mid + \rangle - \frac{1}{\sqrt{3}} \mid - \rangle \right] \\ &= \frac{\hbar}{2} \left[\left(\frac{1-i}{\sqrt{3}}\right) \left(\frac{1+i}{\sqrt{3}}\right) \langle + \mid + \rangle + \left(\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{\sqrt{3}}\right) \langle - \mid - \rangle \right] \\ &= \frac{\hbar}{2} \left(\frac{2}{3} - \frac{1}{3}\right) = \frac{\hbar}{6} \end{split}$$

For S_x , recalling that it flips the states (i.e. $S_x \mid \pm \rangle = \hbar/2 \mid \mp \rangle$), we have

$$S_x |\psi\rangle = \left(\frac{1+i}{\sqrt{3}}\right) S_x |+\rangle + \frac{1}{\sqrt{3}} S_x |-\rangle = \frac{\hbar}{2} \left[\left(\frac{1+i}{\sqrt{3}}\right) |-\rangle + \frac{1}{\sqrt{3}} |+\rangle \right]$$

and so the expectation value is

$$\langle S_x \rangle = \langle \psi \mid S_x \mid \psi \rangle = \frac{\hbar}{2} \left[\left(\frac{1-i}{\sqrt{3}} \right) \langle +| + \frac{1}{\sqrt{3}} \langle -| \right] \left[\left(\frac{1+i}{\sqrt{3}} \right) | -\rangle + \frac{1}{\sqrt{3}} | +\rangle \right]$$
$$= \frac{\hbar}{2} \left[\left(\frac{1-i}{\sqrt{3}} \right) \frac{1}{\sqrt{3}} \langle +| +\rangle + \left(\frac{1+i}{\sqrt{3}} \right) \frac{1}{\sqrt{3}} \langle -| -\rangle \right]$$

$$=\frac{\hbar}{2}\left[\frac{1}{3}+\frac{1}{3}\right]=\frac{\hbar}{3}$$

Pauli spin matrices

Often written: $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$, Where

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_{y} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$, $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

are called the Pauli spin matrices and they have the following properties:

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \mathbf{1}, \quad Tr(\sigma_i) = 0, \quad \det |\sigma_i| = -1,$$

$$\{\sigma_i, \sigma_j\} = \sigma_i \sigma_j + \sigma_j \sigma_i = 2\delta_{ij}, \quad (i, j) = (x, y, z)$$