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Few Special Functions 
INTRODUCTION 
Equations in the form: 

( )21 '' 2 ' ( 1) 0x y xy n n y− − + + =                   (Legendre’s equation) 
( n  is a real constant),  

{ }2 2 2" ' 0x y xy x n+ + − =                      (Bessel’s equation) 
( n  is a positive constant or zero),  

" 2 ' 2 0y ty ky− + =                          (Hermit equation) 
where k is usually a non-negative integer,  

" (1 ) ' 0xy x y ny− − + =                           (Laguerre equation) 
( n  is a positive constant or zero), and 

" 0y ty− =                            (Airy’s equation) 
(t could be positive or negative constant) occur in many physical problems, such as QM, 
EM,CM, SM, etc. The solutions of these functions, with others, are called special functions. 
In these lectures, we discuss the methods of solving these differential equations. 
(Note: Hermit and Airy’s equations will be given as an assignment) 

Hermit's Equation 
Hermite's Equation of order k has the form  

" 2 ' 2 0y ty ky− + =  
where k is usually a non-negative integer.  
H.W. Work out the Hermit's equation using the power series.  Hermit's equation is an 
example of a differential equation, which has a polynomial solution. As usual, the generic 
form of a power series is  

0
( ) n

n
n

y t a t
∞

=

=∑  

We have to determine the right choice for the coefficients (an).  
As in other techniques for solving differential equations, once we have a "guess" for the 
solutions, we plug it into the differential equation. Recall that  

 
and  

 
Plugging this information into the Differential equation we obtain:  

 
or after rewriting slightly:  

 
Next we shift the first summation up by two units:  
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Before we can combine the terms into one sum, we have to overcome another slight obstacle: 
the second summation starts at n=1, while the other two start at n=0.  

Evaluate the 0th term for the second sum: . Consequently, we do not 
change the value of the second summation, if we start at n=0 instead of n=1:  

 
Thus we can combine all three sums as follows:  

 
Therefore our recurrence relations become:  

 
After simplification, this becomes  

 
Let us look at the special case, where k = 5, and the initial conditions are given as:  

. 
In this case, all even coefficients will be equal to zero, since a0=0 and each coefficient is a 
multiple of its second predecessor.  

 
What about the odd coefficients? a1=1, consequently  

 
and  

 
What about a7:  

 
Since a7=0, all odd coefficients from now on will be equal to zero, since each coefficient is a 
multiple of its second predecessor.  

 
Consequently, the solution has only 3 non-zero coefficients, and hence is a polynomial. This 
polynomial  

 
(or a multiple of this polynomial) is called the Hermit Polynomial of order 5.  
It turns out that the Hermit Equation of positive integer order k always has a polynomial 
solution of order k. We can even be more precise: If k is odd, the initial value problem 
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0 10, 1a a= = will have a polynomial solution, while for k even, the initial value problem 

0 11, 0a a= = will have a polynomial solution.  
 
Exercise 1:  
Find the Hermit Polynomials of order 1 and 3.  
Answer. Recall that the recurrence relations are given by  

 
We have to evaluate these coefficients for k=1 and k=3, with initial conditions a0=0, a1=1.  
When k=1,  

 
Consequently all odd coefficients other than a1 will be zero. Since a0=0, all even coefficients 
will be zero, too. Thus  

1( )H t t=  
When k=3,  

 
and  

 
Consequently all odd coefficients other than a1 and a3 will be zero. Since a0=0, all even 
coefficients will be zero, too. Thus  

2
3

3
3( )H t t t= −  

Exercise 2:  
Find the Hermit Polynomials of order 2, 4 and 6.  
Answer.  
Recall that the recurrence relations are given by  

 
We have to evaluate these coefficients for k=2, k=4 and k=6, with initial conditions a0=1, 
a1=0.  
When k=2,  

 
while  

 
Consequently all even coefficients other than a2 will be zero. Since a1=0, all odd coefficients 
will be zero, too. Thus  

2
2( ) 1 2H t t= − .  

When k=4,  
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Consequently all even coefficients other than a2 and a4 will be zero. Since a1=0, all odd 
coefficients will be zero, too. Thus  

 
You can check that  

 
 
H.W. Discuss the SHM as an application of Hermit’s in quantum mechanics. What is the 

condition to have ( )1
2nE n hω= + ?. 

Airy's Equation 
Airy’s differential equation: 

" 0y ty− =  
is used in physics to model the diffraction of light.  
We want to find power series solutions for this second-order linear differential equation.  
The generic form of a power series is  

0
( ) n

n
n

y t a t
∞

=

=∑  

We have to determine the right choice for the coefficients (an).  
As in other techniques for solving differential equations, once we have a "guess" for the 
solutions, we plug it into the differential equation. Recall that  

 
Plugging this information into the Differential equation we obtain:  

 
or equivalently  

 
Our next goal is to simplify this expression such that (basically) only one summation sign 
"∑ " remains. The obstacle we encounter is that the powers of both sums are different, tn-2 
for the first sum and tn+1 for the second sum. We make them the same by shifting the index of 
the first sum up by 2 units and the index of the second sum down by one unit to obtain  
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Now we run into the next problem: the second sum starts at n=1, while the first sum has one 
more term and starts at n=0. We split off the 0th term of the first sum: (FIRST ONE SHOUD 
START FROM 1n = ) 

 
Now we can combine the two sums as follows:  

 
and factor out tn:  

 
The power series on the left is identically equal to zero, consequently all of its coefficients 
are equal to 0:  

 
We can slightly rewrite as  

 
These equations are known as the "recurrence relations" of the differential equations. The 
recurrence relations permit us to compute all coefficients in terms of a0 and a1.  
We already know from the 0th recurrence relation that a2=0. Let's compute a3 by reading off 
the recurrence relation for n=1:  

 
Let us continue:  

 
The hardest part, as usual, is to recognize the patterns evolving; in this case we have to 
consider three cases:  
1. All the terms 2 5 8, , ,a a a " are equal to zero. We can write this in compact form as  
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2. All the terms 3 6 9, , ,a a a " are multiples of a0. We can be more precise:  

 
 
(Plug in k = 1, 2, 3, 4 to check that this works!)  
3. All the terms 4 7 10, , ,a a a "are multiples of a1. We can be more precise:  

 
 
(Plug in k = 1, 2, 3, 4 to check that this works!)  
Thus the general form of the solutions to Airy's Equation is given by  

 
Note that, as always, (0) 1y =  and '(0) 1y = . Thus it is trivial to determine a0 and a1 when 
you want to solve an initial value problem.  
In particular  

 
and  

 
form a fundamental system of solutions for Airy's Differential Equation.  
Below you see a picture of these two solutions. Note that for negative t, the solutions behave 
somewhat like the oscillating solutions of " 0y y+ = , while for positive t, they behave 
somewhat like the exponential solutions of the Differential equation " 0y y− = .  
 

 
In the next section we will investigate what one can say about the radius of convergence of 
power series solutions.  
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LEGENDRE’S DIFFERENTIAL EQUATION 
The differential equation of the form 

( )21 '' 2 ' ( 1) 0x y xy n n y− − + + =  
where n  is a real constant is called Legendre’s differential equation. The singularities of 
Legendre’s equation are x = ± 1. Legendre’s equation can also be written as 

2[(1 ) '] ' ( 1) 0x y n n y− + + =  
 

1 SOLUTION OF LEGENDRE’S EQUATION 
The Legendre’s differential equation is 

 
we set the solution of equation (1), about x = 0. 
Let us assume that the power series solution of equation (1) is of the form 

 
Then we get 

 
Substituting the values of y, y’ and y” in equation (1), we get 

 
or 

 
Equating the coefficients of various powers of x to zero, we get 

 
Now 

 
And in general 

 
yields 

 
We have 
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and 

 
The solution of Legendre’s equation is 

1 1 2oy c y c y= +  
where 

 
And 

 
 
2 LEGENDRE’S POLYNOMIALS 
The singularities of Legendre’s equation are x = ± 1. The distance between the point x = 0 
and the nearest singularity is 1. Therefore, the power series solution is convergent in 1x < . 
The solution 0y  contains even powers of x and the solution 1y  contains odd powers of x. 
The solutions 0y  and 1y  are the linearly independent solution of the Legendre’s 
differential equation. 
If n takes even positive integral values, 0y  reduces to polynomial of even powers. In this 
case 1y  remains as an infinite series. If n takes odd positive, 1y  reduces to a polynomial of 
odd powers, whereas 0y  remains an infinite series. These polynomials multiplied by suitable 
constants are called Legendre’s polynomials. The Legendre polynomials are of degree n and 
are denoted by ( )nP x  Therefore, when n takes integral values one of the linearly 
independent solutions of the Legendre’s differential equation is a Legendre polynomial and 
the second independent solution is an infinite series. These infinite series are called 
Legendre’s functions of second kind and are denoted by ( )nQ x . 
In order to evaluate the multiplicative constants of 
Legendre polynomials we get (1) 1nP = . 
Legendre’s polynomials are also called Legendre’s functions of the first kind and are given 
by: 

 
when n is even, and  

 
when n  is odd. 

( )nP x  is a terminating series. 
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Selected values 
n  ( cos )nP x θ≡  nx  
0 1 

0P  
1 µ  

1P  
2 

( )21 3 1
2

x −  ( )2
1 2 1
3

P +  

3 
( )31 5 3

2
x x−  ( )3 1

1 2 3
5

P P+  

4 
( )4 21 35 30 3

8
x x− +  ( )4 2

1 8 20 7
35

P P+ +  

 
3  Properties of the Legendre Polynomials: 

1- It is self adjoint (Hermitian) , i.e. if we have:  
                                           ( )21 ( ) ( 1) ( )

L

d dx P x P x
dx dx

⎡ ⎤− = − +⎢ ⎥⎣ ⎦
A AA A

���	��

 

       Then †L L=    (Prove that). Hence: 
i- L  has real eigenvalue ( 1)+A A . 
ii- Eigenfunction corresponding to different eigenvalues must be orthogonal. 
 

2- The function ( )P xA  constitutes a complete orthonormal set of functions on the 
interval 1 1x− ≤ ≤ . So we can use them to expanding any function on that interval. 

 
3-  (1) 1P =A  for all A   
4- if A  is even: ( ) ( )P Pµ µ= −A A  
5- if A  is odd: ( ) ( )P Pµ µ= − −A A  

6- 
1

' '
0 1

0           if '
(cos ) (cos )sin ( ) ( ) 2       if '

2 1
P P d P x P x dx

π

θ θ θ θ
−

≠⎧
⎪= = ⎨

=⎪⎩ +
∫ ∫A A A A

A A

A A
A

 

 
Example 1: The potential at the surface of a sphere of radius R is given by 

( ) ( )cos 2oV Vθ θ= , where oV  is a constant. Show that 2(4 )
3
o

o
VV P P= − . 

Answer: [ ]2 2
2

2 1 1cos 2 2cos 1 2 1 4 1
3 3

P Pθ θ −⎡ ⎤= − = − = −⎢ ⎥⎣ ⎦
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Example 2: Express the function ( ) 3 2 1f x x x x= + + + , in terms of Legendre 
polynomials.  
Answer: 

( ) ( ) ( )3 2
3 1 2 1

3 2 1

1 11 2 3 2
5 3

1 1 4 12
5 3 5 3

o o

o

f x x x x P P P P P P

P P P P

= + + + = + + + + +

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 

 
Legendre series representation 
Arbitrary function ( )f x can be expanded in Legendre polynomials as:  

1

0 -1

2 1( ) ( ) ,          ( ) ( )
2n n n n

n

nf x A P x A f x P x dx
∞

=

+
= ⇒ =∑ ∫  

 
 

Expand  ( )f x  , where
1 0 1

( )
0 1 0

x
f x

x
+ < <⎧

= ⎨ − < <⎩
, as an infinite series of Legendre 

polynomial ( )nP x . 
Solution: 

 
where 

 
Hence 

 
 
and 
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We get 

 
Example:   Jackson’s book page 99 

Expand ( )f x  , where
1 0

( )
1 0

x
f x

x
+ >⎧

= ⎨− <⎩
, as an infinite series 

of Legendre polynomial ( )nP x . 

 

 
Answer:  
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 Bessel's Equation 
Bessel’s equation in the form 

{ }
2

2 2 2
2

1" ' " ' 1 0x y xy x y y y y
x x

νν
⎧ ⎫

+ + − = + + − =⎨ ⎬
⎩ ⎭

                          (1) 

has 0x = as a regular singular point, so we can write: 
1 2

0 0 0
( ) , '( ) ( ) , ''( ) ( )( 1)r n n r n r

n n n
n n n

y x a x y x n r a x y x n r n r a x
∞ ∞ ∞

+ + − + −

= = =

= = + = + + −∑ ∑ ∑    (2)  

And Bessel’s equation (1) reduces to: 
2

2 1
2

0

1( )( 1) ( ) 1 0n r n r n r
n

n
n r n r x n r x x a

x x
ν∞

+ − + − +

=

⎡ ⎤⎧ ⎫
+ + − + + + − =⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦
∑                         (3A) 

or 

      { }2 2

0
( )( 1) ( ) 0n r n r

n
n

n r n r n r x x aν
∞

+ − +

=

⎡ ⎤+ + − + + − + =⎣ ⎦∑                         (3B) 

or 

                                       { }2 2 2

0
( ) 0r n r n

n
n

r n x x aν
∞

+ − +

=

⎡ ⎤+ − + =⎣ ⎦∑                        (3C) 

1- From (3C) equating the coefficient of lowest power of x , i.e. 2rx −  by putting 0n = , we 
have: 

( )2 2
0

0

0

0

r a

a r

ν

ν

− =

≠ ⇒ = ±∵
.                                   (I) 

Now equating to zero the coefficient of 1rx −  by putting 1n = in (3C), we get: 
{ }2 2

1( 1) 0r aν+ − =                                    (II) 

Since, r ν= ± , 2 2( 1) 0r ν⎡ ⎤+ − ≠⎣ ⎦  therefore 1 0*a = . 1
2r = −  is a special case and has to be 

consider separately. Then, the indicial equation (II) will implies, 1 3 5 2 1 0na a a a += = = = =" , 
i.e. no term with odd values will be given. So, for 2,4,6,n = "  the recurrence relation of (3C)  
will be: 

22 2

1 , 2
( )n na a n
n r ν −= − ≥
+ −

                             (4) 

With r ν= + , (4) will be reduced to: 

2 22 2

1 1 , 2
( ) ( 2 )n n na a a n
n n nν ν ν− −= − = − ≥
+ − +

 

2 02

1
2 1 ( )

a a
ν

= −
⋅ ⋅ +

,        4 04

1
2 2! ( 1)( 2)

a a
ν ν

=
⋅ ⋅ + +

,         6 06

1
2 3! ( 1)( 2)( 3)

a a
ν ν ν

= −
⋅ ⋅ + + +

 

And in general the coefficients in equation (4) reduce to: 

2 02

1( 1) , 1, 2,3,
2 !( 1)( 2) ( )

n
n na a n

n n n nν
= − =

+ + +
"

"
                       (5) 

Since 0a  is an unknown constant, which has different values for different problems as 
determined by the boundary conditions for the problem, we can redefine 0a  as follows: 

0
1

2 !
a A νν

=                                                                 (6) 

where A  is the constant that is selected to fit the boundary conditions. (This is a convention 
used to obtain an equation that is used for computation and tabulation of Bessel functions.) 
With this substitution we can write equation (5) as follows. 
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2 2

1( 1) , 1, 2,3,
2 !( 1)( 2) ( ) !

n
n na A n

n n n nν ν ν+= − =
+ + +

"
"

 

 
And the power series solution will be: 

( ) ( )2
2

0

( 1)( ) ( )
!( )!2

j
j

j
j

y x x x J x
j j

ν
ννν

∞

+
=

−
= =

+∑                     (7) 

The A coefficient is dropped with the understanding that any final solution can be multiplied 
by a constant to satisfy the boundary conditions.  For integer ν  , the relation 

( ) ( 1) ( )J x J xν
ν ν− = − is hold. This is implies that the two solutions are not independent.  The 

Bessel function of the first kind of integer order ν , ( )J xν  is defined by  equation (7), with 
the arbitrary constant, A, omitted. 
Plots of Bessel functions Equation (7) for some low values of n are shown below.  Note that 

0 (0) 1J =  while (0) 0nJ =  for all 0n > . 
Bessel Functions of the First Kind for Integer Orders
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1
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x

J n
(x

) n = 0
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Example:  the solution of the equation { }2 2" ' 0 0x y xy x y+ + − =  is 

1 0 ( )y c J x=  

Example:  the solution of the equation { }2 2" ' 1 0x y xy x y+ + − =  is 

1 1( )y c J x=  

Example:           
( )

2 2 4 6

0 2 2 2 2 2 2 2
0

1( ) ( 1) 1
2 2 2 4 2 4 6!

n
n

n

x x x xJ x
n

∞

=

⎛ ⎞= − = − + − +⎜ ⎟ ⋅ ⋅ ⋅⎝ ⎠
∑ "  

Example:          
3 5

1 4 7( )
2 2 2 3
x x xJ x = − + +

⋅
"  

Zeros of Bessel functions 
It is clear from (7) that the Bessel function ( )J xν has an infinite amount of zeros for 
the half axis 0 < x < 1. Let us denote these zeros as ( ) 0J xν = . 
<< NumericalMath`BesselZeros` 
 BesselJZeros[0,5] 
 {2.40483,5.52008,8.65373,11.7915,14.9309} 
 

 


