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Revised One-electron system 
(Weissbluth Chapter 16) 

The Fine Structure of the Hydrogen Atom 
Whilst the predictions of the quantum model of hydrogen are a very good approximation to reality, it 

turns out that in high resolution spectra of hydrogen that the predicted lines are in fact split into sets of lines. 
This is the so called fine structure of hydrogen and means that we must have missed out something from the 
model we have written down.  

When we wrote down the quantum model of the hydrogen atom we used the Schrödinger equation. 
The Schrödinger equation is the quantum equivalent to Newton’s equation of motion in as much as it is non-
relativistic. Just as with Newton’s equations non-relativistic quantum mechanics is a good approximation 
under many circumstances. However, it is known to fail under other circumstances. The extension of 
quantum mechanics to make it relativistic was made by Dirac who replaced the Schrödinger equation with 
the Dirac equation. We will not try to solve the Dirac equation. Instead, as in the small velocity limit the 
Dirac equation tends towards the Schrödinger equation, we will treat the difference between the Dirac and 
Schrödinger equations as a series of perturbations to the Schrödinger equation. For historic reasons the 
different perturbations have been named.  

 

Spin-Orbit Coupling 
 

A charge moving creates a current. 
A current creates a magnetic field. 

 From the electron’s point of reference, the nucleus appears to be moving; therefore, the nucleus 
creates a magnetic field. Recall the electron with its spin has a magnetic moment. - i.e., it behaves like a bar 
magnet. The magnetic moment of the electron tries to align itself with the magnetic field that comes via the 
“orbiting” of the nucleus.  This effect is the origin of spin-orbit coupling. 
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where sG  is the spin angular momentum and 
G
l  is the orbital angular momentum. 

0µ  - permittivity of free space. 

 
 The spin-coupling term affects the energy levels of the electrons in an atom.  Sometimes the energy 
levels that were thought to be degenerate are split into separate energy levels because of spin-orbit coupling, 
e.g., 2pzα and 2pzβ are not degenerate when spin-orbit coupling is taken into account. 
 
Comment: We have to treat the term soE  as perturbation on the hydrogen atom states. The first thing to 
note is that the perturbation breaks two fundamental symmetries of the Hamiltonian. These are:  

1- The symmetries associated with changing the sign of the angular orbital momentum, and  
2- The sign of the spin angular momentum.  

In the new model, changing the sign of one or the other on their own changes the sign of the perturbation, 
and it is only if both are changed simultaneously that the energy is unchanged. This less formal argument is 
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born out by the fact that the perturbation no longer commutes with the operators associated with the z-
components of the orbital or spin angular momenta. This symmetry breaking means we need to seek the 
correct combination of the degenerate states given by the original simpler calculation to use in the 
perturbation calculation. It turns out that we have to invent a new type of angular momentum called the total 
angular momentum which is given by 

( )22 2 2
J L S J L S L S 2L S= + ⇒ = + = + + ⋅
G JG G G JG G JG G JG G

 

Consider the Hamiltonian 
2 2 2
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H.W. discuss the origin of the term ( )rξ . 

H.W. Find 1L S 0,
2sm m⋅ = =A

JG G
, hence find 1, L S 0,

2l sm m ⋅
JG G

 

 
H.W. Calculate the value of ( )rξ  in the equation: 

( )sE r L S= ξ ⋅
JG G

 

for the two sodium D lines (5889.95
o
A , 5895.92

o
A  ) . Remember that the units of =  is eV . s  

[Ans: ( ) 27
2

1r 3.28 10
eV . s

ξ = × ]  

 
                              (1) constantˆˆ. ,                      H a L S a= =  

Hint: you can use the following relations: 

( ) ( )

ˆ ˆ ˆ ˆ, , ( 1) ( 1) , 1 ,

1 1ˆ ˆ ˆ ˆ ˆ ˆ,
2 2

x y

x y

L L iL L m m m m

L L L L L L
i

± ±

+ − + −

≡ ± = + − ± ±

= + = −

A = A A A
, 

( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( )

ˆ ˆ ˆˆ ˆ ˆL S

1 1 1 1ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ
2 2 2 2
1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4 4 2

+ − + − + − + −

+ − + − + − + − + − − +

⋅ = + +

= + + + + − −
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To work out table 16.5 (Weissbluth Chapter 16) 
a- in the coupling representation. 

For coupling states ,j jm , use  { }2 2 21ˆ ˆˆ ˆ ˆ.
2

L S J L S= − −  
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a- In the uncoupling representation ,lm ms , use ( )1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ.
2z zL S L S L S L S+ − − += + +  
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Example: For one-electron atoms work out the energy corrections due to the following terms: 
relativistic ( ˆ

rH ), spin orbit ( ˆ
LSH ), Darwin ( ˆ

DH ). Give an example of the contributions of each 
term to the splitting of the n = 2 level of hydrogen.  
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Spin-Orbit Coupling and Fine structure 
This is explain the reason that the energy level with 0>A , split into two components, which 

could not be explained by the Schrödinger theory. Since this splitting is very small and can be only 
resolved with high resolution spectrographs, where the hydrogen lines appear as a fine substructure, 
it was named fine structure.  
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where α  is the fine structure constant and is given by: 
2

2 5e 1 5.33 10 ,
c 137

−α = ≈ ⇒ α = ×
=

 

And 
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o 2
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Example: For the np levels of the H atom, we have Z 1= , and 1=A . From the above expression 
we therefore obtain for the fine structure splitting as: 
 

n  nE (Ry)  j 1 Ry(cm )−
LSE  (Ry)∆ LSE 1(cm )LSE −∆  

2 -0.250 3/2 
1/2 

1.14E-6  (0.12) 
-2.19E-6  (-0.24)

3.33E-6 0.36 

3 -0.111 3/2 
1/2 

 9.87E-7 0.12 

4 0.0625 3/2 
1/2 

 4.16E-7 0.044 
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This shows that: 

1- Fine structure splitting are observed only for levels with 0>A , i.e. for p, d, f, levels, not for 
s-levels with 0=A . 

2- The splitting is very small compared to the energy of the levels and justifies the name “fine 
structure.” 

3- The fine structure splitting decreases with increasing quantum numbers n and A , but it 
increases proportionally to 2Z , or the product 2

nZ E . Since the energies E of the levels with 
principal quantum number n follow the relation 2 2/= −nE Z n . 

4- The energy levels split, depending on the orientation of the spin, into the two components 
with 1

2
= +Aj and 1

2
= −Aj .  

5- The fine structure may be regarded as Zeeman splitting due to the interaction of the 
magnetic spin moment with the internal magnetic field generated by the orbital motion of 
the electron. 

 

The Relativistic Correction  
Moving from the non-relativistic formula for the energy of an electron to the relativistic formula we 
make the change  

 
Taylor expanding the square root around 2P , we find  

 

So we have our next order correction term. Notice that 
2

2
P
m

was just the lowest order correction to 
2mc .  

What about the ``reduced mass problem''? The proton is very non-relativistic so only the electron 
term is important and the reduced mass is very close to the electron mass. We can therefore neglect 
the small correction to the small correction and use  

 
⇒  In summary, according to special relativity, the kinetic energy (i.e., the difference 

between the total energy and the rest mass energy) of a particle of rest mass m and momentum p is  
2 4

2 2 2 4 2
3 2

p pT p c m c mc
2m 8m c

= + − = − +…  
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In the non-relativistic limit p mc<< , we can expand the square-root in the above expression to 
give  

22p 1 pT 1
2m 4 mc

⎡ ⎤⎛ ⎞= − +…⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

The second term in the expansion of the kinetic energy is called the relativistic mass 
correction.  Notes: Neglecting the nuclear motion, the Hamiltonian with relativistic correction of the 
Hydrogen atom is given by: 

22 2 2

2

ˆ ˆ1ˆ ˆ ˆ
2 2 2

⎛ ⎞
= + = − − − ⎜ ⎟

⎝ ⎠
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e e e

P Ze PH H H
m r m c m

 

With the notation: 
2 2

(0)ˆ

2
ˆ

o n
P Ze

m re
H E− −= =  

Put 
2 2

(0)ˆ

2
n

P Ze

m re
E= +− , where  

2
(0)

2 Ryn
ZE
n

= − , then the first order correction will be: 
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Using  
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(0) (0) (0)2 (0) (0)
n n n n n

Ze Ze Ze Ze ZeE E E E E
r r r r r

⎛ ⎞⎛ ⎞ ⎛ ⎞
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⎝ ⎠⎝ ⎠ ⎝ ⎠
 

Then  
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(0)2 2 (0)
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1 1                 + ' '
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) ]

∆ = − +

+

r n n
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For the terms; the first one will be: 

( )2(0)2 (0)
'' n n m mnlm E nlm E δ=  

The second and third terms will be: 
(0) (0) (0)

'
1 1 1' 'n n n m mnlm E nlm nlm E nlm E nl nl
r r r

δ= =  

The fourth term will be: 

'2 2

1 1' m mnlm nlm nl nl
r r

δ=  

The final correction is: 
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But we know: 
2

2 2 3 1
2

1 1 1 1   Ry,   Ry
( )o o l

Z Znl nl nl nl
r a n r a n +

⎛ ⎞
= = ⎜ ⎟
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Therefore: 
4 2

13
2

3 1

4 ( )
Ry[ ] −

+
=

Ar n

ZE
n
α

 

Comments:  
1- The relativistic energy shift is maximum for the ground state of atoms ( 1=n  and 0=A ). 
2- The correction depends on both quantum numbers n  and A . The ( )1−n -fold degeneracy of 

states ( ),An , deduced from the Schrödinger theory is lifted by the relativistic correction. 
3- At a given value of n , the electron comes closest the nucleus (and therefore acquires the 

largest velocity for small values of A  (the Sommerfeld orbits are then ellipses with large 
eccentricity). The increase in relativistic mass is then becomes maximum, which decreases 
the energy term value. For the maximum allowed ( )1= −A n the orbit is circular and the 
velocity of the electron has a constant medium value. the relativistic mass correction is then 
minimum.   

 
Example: For H atom with 1=n ,  0=A  the magnitude of the relativistic correction is: 

2
4 -1

1
5 9.0 10  eV 7.2 cm

4
−∆ = = − × =rE E α

 

 
For 2=n ,  0=A  we obtain: 

2 4 -1
2

13 1.5 10  eV 1.20 cm
16

−∆ = = − × =rE E α  

For 2=n ,  1=A  we obtain: 
2 5 -1

2
7 2.6 10  eV 0.21 cm
48

−∆ = = − × =rE E α  

As the numerical examples show, the relativistic mass correction only amounts to less than 10-4 of 
the Coulomb energy. 

 
for 1Z =  and 1l =  
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n 1(cm )LSE −∆
2 0.36 
3 0.12 
4 0.044 

 
 

n l j 1(cm )E −∆  
1 0 1/2 -1/4 

0 1/2 -5/64 2 
1 1/2,3/2 -5/64, -1/64

 
Sum of Relativistic Fine Structure Corrections 
Taken together the three relativistic corrections discussed above give an overall first order energy 
shift of  

2 4

3 1
2

1 3{ } Ry,
4r LS

ZE E
n nj

α
+ = − −

+
 

Darwin Correction 3E∆  
The third correction has no classical analogue is due to the highly non-classical dynamics of 
electrons near the nucleus. It can be shown that to first order it gives a correction to the energy of l 
= 0. 
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Figure: The contribution 1 2 3, , ,E E E∆ ∆ ∆ to the splitting of the n = 2 level of hydrogen. 


