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Priciple of indistinguishability  
Consider two quantum states labeled by the quantum numbers a and b and filled with two non-
interacting particles, 1 and 2.  The Schrödinger equation of the system will be: 

)1                       (                         Ĥ Eψ ψ= 
where  

)2                                (
2

2 2ˆ (1) (2)
2

H
m
⎡ ⎤= − ∇ +∇⎣ ⎦

=  

and 
)3                                              ((1, 2) (1) (2)= a bψ ψ ψ 

  
 
 
 
 
 
 
 
  

  
Is (1, 2)ψ  in (3) acceptable? Answer is No, since we can also have: 

)4                                                     ((1, 2) (1) (2)= b aψ ψ ψ  

that satisfies Ĥ . Any other superposition will be solution, for example 

)5                                ([ ]1
2

(1,2) (1) (2) (1) (2)+ = +a b b aψ ψ ψ ψ ψ  

)6                                ([ ]1
2

(1,2) (1) (2) (1) (2)− = −a b b aψ ψ ψ ψ ψ  

Use the permutation operator ˆ (1, 2)P , which exchange 1 and 2,we have: 

 )7            (Symmetric           [ ]1
2

ˆ (1,2) (1,2) (2) (1) (2) (1) (1,2)+ += + =a b b aP ψ ψ ψ ψ ψ ψ  

 )8       (        Antisymmetric  [ ]1
2

ˆ (1,2) (1,2) (2) (1) (2) (1) (1,2)− −= − = −a b b aP ψ ψ ψ ψ ψ ψ  

Watch for the behavior for (1, 2)+ψ  and (1, 2)−ψ  at small distance, what is your comment? We 
reach to what so called Pauli Exclusion Principle. 
 
Pauli Exclusion Principle 
 Weaker statement:  No two electrons can have the same set of quantum numbers. 
 
 Stronger statement:  Indistinguishable fermions must have total antisymmetric wavefunction. 
- fermion – particle with half-integral spin, i.e., electron, positron, proton,  3 He . 
- boson – particle with integral spin, photon, photons, phonons, 4 He , π -meson,. 
Symmetric for Bosons, and antisymmetric for Fermions. 

(2) 

(1) (2)a bψ ψ ψ= 

(1)

(1)

(2)

(2) (1)a bψ ψ ψ= (1) (2) (2) (1)a b a bψ ψ ψ ψ ψ± = ± 

(?)

(?)

b   

    
 a  
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Comments: 
1- Antisymmetric wavefunction is a wavefunction that changes sign when two particles are 

exchanged.  
For the ground state Helium atom, the antisymmetric wave function is expressed in the spin 
portion of the wavefunction. 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ){ }

1s 1s 1s 1s

1s 1s

11, 2 1 2 1 2
2

11 2 1 2 1 2
2

α β β α
ψ = ψ ψ −ψ ψ

= ψ ψ α β −β α
 

 - where α, β are spin portion of the functions. 
 
            Let us observe what happens to this two-particle wavefunction when we exchange the labels 
1 and 2, where ( )i i i(i) r , ,≡ θ φ . 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ) ( ){ } ( )

1s 1s 1s 1s

1s 1s

1 12,1 1 2 2 1 2 1 1 2 2 1 2 1
2 2
11 2 1 2 1 2 1, 2
2

ψ = ψ ψ α β −β α = ψ ψ −β α +α β

= −ψ ψ α β −β α = −ψ
 

 
2- Symmetric wavefunction is a wavefunction whose sign remains unchanged when particles 

are exchanged. 
 

Examples of symmetric spin functions for two particles 
                ( ) ( ) ( ) ( )1s 2s1 2 1 2

α α
α α ⇒ ψ ψ  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1s 2s 2s 1s
11 2 1 2 1 2 1 2
2 α β β α

α β +β α ⇒ ψ ψ +ψ ψ ( ) ( ) ( ) ( )1s 2s1 2 1 1
β β

β β ⇒ ψ ψ  

 
What about the antisymmetric wavefunction for three or more particles?  Thank goodness for Slater 
determinants. 
 
Slater determinants 
Reconsider  

( ) ( ) ( ) ( ) ( ){ } ( ) ( )
( ) ( )
1 21 11,2 1 2 1 2
1 22 2

α α
ψ = α β −β α =

β β
 

We note that the antisymmetric wavefunction can be written as a determinant. This pattern follows 
wavefunctions of three or more particles. 
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Properties of the determinant: 
a- If two columns are the same, the determinant will be zero. 

                                   
( ) ( )
( ) ( )
1 21 0
1 22

α β
=

α β
 

b- Changing the positions of the columns will change the sign of the determinant. 
 

The wavefunction for three particles (such as the ground state Li atom) (note we need to explicitly 
include the spatial wavefunction.) 
 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1s 1 1s 2 1s 3
11, 2,3 1s 1 1s 2 1s 3
3! 2s 1 2s 2 2s 3

1s 1 1s 2 2s 3 1s 2 1s 3 2s 1 1s 3 1s 1 2s 21
1s 3 1s 2 2s 1 1s 2 1s 1 2s 3 1s 1 1s 3 2s 26

α α α
ψ = β β β

α α α

α β α + α β α + α β α +⎧ ⎫⎪ ⎪= ⎨ ⎬
− α β α − α β α − α β α⎪ ⎪⎩ ⎭

 

 
An antisymmetric wavefunction for n particles can be written as 
 

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2 3 n
1 2 3 n

11, 2,3, , n 1 2 3 n
n!

1 2 3 n

α α α α
β β β β

ψ = γ γ γ γ

ω ω ω ω

"
"

… "
# # # % #

"

 

 
The Pauli’s exclusion principle imposes an additional complication in calculating the energy. In 
general for the electron-electron repulsion integral, we have: 

( ) ( ) ( )*
1 2 2 2

12

1V r r r dr
r

= ψ ψ∫  

If the wavefunction is an antisymmetric wavefunction (as it should be), then the integral is broken 
into two portions: 

( ) ( ) ( ) ( ) ( )* *
1 2 2 2 2 2 2

12 12

1 1V r r r dr r r dr
r rα α α β= ψ ψ + ψ ψ∫ ∫  

The first integral is called the Coulomb integral.  The second integral is called the exchange 
integral.  The exchange interaction is a consequence of quantum effect, due to that the electrons 
are indistinguishable (or due to Pauli Exclusion Principle We can see that the antisymmetry 
property of the wavefunction has a measurable effect on the energy. 
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Examples:  
A-      For 1s2, the wavefunction, including the spin, is represented by  
 
 (1)                 gletrrrru sin21001100210 )( )(),( χφφ GG

=  
where the spin part is antisymmetric, and the spatial part is symmetric, under exchange of  electron 
1 and 2. The wavefunction in (1) does not include the e-e interaction. It can be calculated by doing 
this integral 

 (2)           2 23 3
1 2 100 1 100 2

1 2

1E d r d r  (r )  (r )
r r

∆ = φ φ
−∫

G G
G G  

Note that the spin function is integrated to one directly. 
B-   For two electrons designated by 1s2 A , for example, we can have singlet or triplet states, 

(3a)                         [ ](s)
1 100 1 2lm 2 2lm 1 100 2 singlet

1u (r ) (r ) (r ) (r )  
2

= φ φ + φ φ χ  

(3b)                         [ ]( t )
1 100 1 2lm 2 2lm 1 100 2 triplet

1u (r ) (r ) (r ) (r )  
2

= φ φ −φ φ χ       

Note that the spatial and spin functions are combined to give total antisymmetric wavefunctions.  
Using first-order perturbation theory, the integral can be expressed by 

[ ]

[ ]

( . ) 3 3
1 1 2 100 1 2 0 2 2 0 1 100 2

100 1 2 0 2 2 0 1 100 2
1 2

2 23 3
1 2 100 1 2 0 2

1 2

3 3 * *
1 2 100 1 2 0 2 2 0 1 100 2

1 2

1 ( ) (r )  (r ) ( ) *
2

1  ( ) (r )  (r ) ( ) 

1    ( )  (r )

1    ( )  (r ) (r ) ( )

∆ = ±

× ±
−

=
−

±
−

∫ ∫

∫ ∫

s t
l l

l l

l

l l

E d r d r r r

r r
r r

d r d r r
r r

d r d r r r
r r

φ φ φ φ

φ φ φ φ

φ φ

φ φ φ φ

= ±

∫ ∫
J K

 

where the first integral, J , is the classical expression for the interaction energy between two 
electron clouds represented by the modulus square of each wavefunction. The second term has no 
classical analog-- it is the exchange interaction ( K ). The latter is a consequence of quantum 
effect, due to that the electrons are indistinguishable (or due to Pauli Exclusion Principle). 

2*
1 1 1 1

2*
2 1 1 1

(1) (1) (1) ,

(2) (2) (2)

= − = −

= − = −

s s s

s s s

ρ ψ ψ ψ

ρ ψ ψ ψ
  

  * *
1 2

12

1(1) (1) (2) (2)= ∫ ∫ a b b aK d d
r

ψ ψ ψ ψ τ τ               

K , which is always positive, represents the interaction energy between the two electrons whose 
distributed charge densities 1ρ  and 2ρ . 

The electrostatic repulsion 
12

1
r

between the electrons has partly removed the degeneracy. 
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H.W. Check the normalization of the function: 

[ ]1
2

(1) (2) (1) (2)a b b aψ ψ ψ ψ ψ± = ±  

Example: work out the Helium atom in the ground state: 
Answer: For the ground state of Helium atom, the expected wave functions are: 

 
1 1 1

2 1 1

3 1 1

4 1 1

(1) (2) (1) (2)
(1) (2) (1) (2)
(1) (2) (1) (2)
(1) (2) (1) (2)

s s

s s

s s

s s

ψ ψ ψ α α
ψ ψ ψ α β
ψ ψ ψ β α
ψ ψ ψ β β

=

=

=

=

  

which are the solutions of the equation: 
 

2 2
1 2

1 2 12

1 2 2 1
2

⎛ ⎞
⎡ ⎤− ∇ +∇ − − + =⎜ ⎟⎣ ⎦

⎝ ⎠
i o iE

r r r
ψ ψ  

But they will not satisfy Pauli’s exclusion principle, since: 
1 1 1 1

2 3

3 2

4 4

ˆ(1, 2) (2) (1) (2) (1)
ˆ(1, 2)
ˆ(1, 2)
ˆ(1, 2)

s sP

P

P

P

ψ ψ ψ α α ψ

ψ ψ

ψ ψ

ψ ψ

= =

=

=

=

 

So, we have to define: 

[ ]

[ ]

1 1

1 1

1(1, 2) (1) (2) (1) (2) (1) (2)
2

1(1, 2) (1) (2) (1) (2) (1) (2)
2

+

−

= +

= −

s s

s s

ψ ψ ψ α β β α

ψ ψ ψ α β β α
  

Then, 
ˆ (1, 2) (1, 2) (1, 2)
ˆ (1, 2) (1, 2) (1, 2)

+ +

− −

= +

= −

P

P

ψ ψ

ψ ψ
  

H.W. Prove that −ψ  take the form of Slater determinant: 

(1) (2)(1) (1) (2) (2)1 1 1 11 1
2! (1) (1) (2) (2) 2!1 1 (1) (2)1 1

(1,2)− == s ss s
s s

s s

α αψ ψψ α ψ α
β βψ β ψ β ψ ψ

ψ  

H.W. Using the wavefunction [ ]1 (1) (2) (2) (1)
2± = ±a b a bψ ψ ψ ψ ψ for the e-e interaction,  

12
12 2 1

1 1ˆ = =
−

H
r r r

, 

 Prove that: 
*

12 1 2Ĥ d d J Kψ ψ τ τ± ± = ±∫  
where 

r12 

r2 

1 

r1 

Z=2 

2 
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22 2* *
1 2

12

(1) (2)a b
eJ d d
r

ψ ψ τ τ= ∫ ∫ ,                   * *
1 2

12

1(1) (1) (2) (2)= ∫ ∫ a b b aK d d
r

ψ ψ ψ ψ τ τ  

 
For the operator: 

2 2
1 2

1 2 12

1 2 2 1
2 oE

r r r
ψ ψ

⎛ ⎞
⎡ ⎤− ∇ +∇ − − + =⎜ ⎟⎣ ⎦

⎝ ⎠
 

Use the H-equation: 
2

2
2

1 ,                        
2

⎛ ⎞− ∇ − = = −⎜ ⎟
⎝ ⎠

o o
Z ZE E
r n

ψ ψ  

12
12 2 1

1 1ˆ = =
−

H
r r r

 

 
Use the function: 

[ ] [ ]1 1(1) (2) (2) (1) ,
2 2± = ± = ±a b a b C Dψ ψ ψ ψ ψ  

then 

1 2 1 2
1
2

+ = ± + ±H H C D H H C D  

 
Use the integral: 

( ) (2) ( ) (2) ( ) (2) ( ) (2)a b i a b i a b i a b i aa bbi H i E i i Eψ ψ ψ ψ ψ ψ ψ ψ δ δ= =  
and  

(1) ( ) ( ) (1) (1) ( ) ( ) (1) 0a b i a b i a b i a b i ab abi H i E i i Eψ ψ ψ ψ ψ ψ ψ ψ δ δ= = =  
we will have: 

1 2

1 2 1 2 1 2 1 2 1 2

2 2 0 0

1 2

1
2

o oE E

o o

H H C H H C D H H D C H H D D H H C

E E
= = = =

⎡ ⎤
⎢ ⎥+ = + + + ± + ± +
⎢ ⎥
⎣ ⎦

= +

���	��
 ���	��
 ���	��
 ���	��
  

and  

12 12 12 12 12 12
1 1
2 2

= ± ± = ⎡ + ± ± ⎤⎣ ⎦H C D H C D C H C D H D C H D D H C  

Note that: Due to symmetry, i.e. of exchanging 1 and 2, we have: 
12 12 12 12;               = = = =J C H C D H D K C H D D H C  

Then: 

12 12
1
2

= ± ± = ±H C D H C D J K  

 
1 2 (1 , 2 ) (1 , 2 )o oH E E J K= + + ±A A A A  
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Example: Neglecting the interaction term in Helium atom, the single electron energy will be 
(Z=2) 

2

2 2

5413.6   eVnl
ZE
n n

= − ≈ −  

For 1s2                                                           1 154 + 108  eV
1 1nlE ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

For single ionized Helium:      + 1 1(He ) 54 + 54  eV
1nlE ⎛ ⎞= − = −⎜ ⎟∞⎝ ⎠

 

For 1s 2s and 1s 2p           2

1 154 + 68  eV
1 2nlE ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

The J and  K  re in a.u. , we will use ( )2, a.u. 27.2  eVZ = =  
17 59(1 , 2 ) 11.42  eV, (1 , 2 ) 13.21  eV
81 243
16 112(1 , 2 ) 1.19  eV, (1 ,2 ) 0.93  eV
729 6561

J s s Z J s p Z

K s s Z K s p Z

= = = =

= = = =
 

then 
3

1

3

1

(1 , 2 ) S 68 (1 ,2 ) (1 ,2 ) 57.8 eV
(1 ,2 ) S 68 (1 ,2 ) (1 ,2 ) 55.4 eV

(1 ,2 ) P 68 (1 ,2 ) (1 ,2 ) 55.7 eV
(1 ,2 ) P 68 (1 ,2 ) (1 ,2 ) 53.9 eV

E s s J s s K s s
E s s J s s K s s

E s p J s p K s p
E s p J s p K s p

= − + − = −

= − + + = −

= − + − = −

= − + + = −

 

 
The first excited levels of the helium atom. 
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The first-order energy corrections seem to indicate that the lower of the two levels of the ls2p 
configuration lies below the higher of the two levels of the ls2s configuration. Study of the helium 
spectrum reveals that this is not so. The error is due to neglect of the higher-order perturbation-
energy corrections. 
 
 

 
The shifts in energy of the ideal atomic states in helium when the electron interaction is taken into 
account. 

 
 



Prof. Dr. I. Nasser                                                      Phys-551      (T-112)                                            March 1, 2012 
Identical_particles.doc  

 9

 
Helium terms 
 
Triplet (Orthohelium) states are lower in energy than the singlet (parahelium) states. Explanation 
for this is: 
 
1- Parallel spins make the spin part of the wavefunction symmetric. 

 
2- Total wavefunction for electrons must be antisymmetric since electrons are  fermions. 

 
3- This forces space part of wavefunction to be antisymmetric.  

 
4- Antisymmetric space wavefunction implies a larger average distance between electrons than a 

symmetric function. Results as square of antisymmetric function must go to zero at the origin 
⇒  probability for small separations of the two electrons is smaller than for a symmetric space 
wavefunction. 

 
5- If electrons are on the average further apart, then there will be less shielding of the nucleus by 

the ground state electron, and the excited state electron will therefore be more exposed to the 
nucleus. This implies that it will be more tightly bound and of lower energy. 
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H.W.  For the ground state of Li atom 21s 2s : 
1- Write down the full Hamiltonian, 
2- Use Slater’s determinant for the ground state of Li atom in the form: 

( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1s 1 1s 2 1s 3
11,2,3 1s 1 1s 2 1s 3
3! 2s 1 2s 2 2s 3

1s 1 1s 2 2s 3 1s 2 1s 3 2s 1 1s 3 1s 1 2s 21
1s 3 1s 2 2s 1 1s 2 1s 1 2s 3 1s 1 1s 3 2s 26

α α α
ψ = β β β

α α α

α β α + α β α + α β α +⎧ ⎫⎪ ⎪= ⎨ ⎬
− α β α − α β α − α β α⎪ ⎪⎩ ⎭

 

To proof: 
2 (1 ) (2 ) 2 (1 ,2 ) (1 ,1 ) (1 ,2 )o oH E s E s J s s J s s K s s= + + + −  

Where 

2 2 2

1 1 12 (1 ) (2 ) a.u. 275.5  eV
1 1 2o oE s E s ⎛ ⎞+ = − + + = −⎜ ⎟
⎝ ⎠

 

59652 (1 , 2 ) (1 ,1 ) (1 , 2 ) a.u. 83.5eV
972

J s s J s s K s s+ − = =  
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