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COLLISION THEORY 
QUANTUM SCATTERING

Introduction: So far we have applied quantum mechanics to the bound state problems (
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case). For example, the problem of hydrogen atom, 
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 and 
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molecules, which consists of two, or more, particles, an electron and a proton, separated by a distance r and bound together by a Coulomb force 
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  which extends out to 
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. The mutual potential energy of the two particles is, therefore
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. When we substitute this potential energy into the Schrödinger equation and apply the admissibility conditions on the wave function, we find that the energy levels form a discrete set.

Now we want to apply quantum mechanics to scattering problems or problems involving collision between atomic or nuclear particles. In this case, the total energy of the system is positive and continuous (not discrete) or each positive value of energy is an eigenvalue of the Schrödinger equation. This is specified in advance. We substitute both the specified total energy of the system and the potential energy function (the potential energy describing the interaction between the colliding particles) into the Schrödinger equation and determine the behavior of the wave function of the two particles (at large separations, why so would be clear soon) in terms of energy.

In our study of scattering problem,

i- We shall confine ourselves to the case of elastic scattering (which does not affect the internal structure of the colliding particles, also momentum before the scattering is equal to the momentum after the scattering) of incident particles by the target particles.

ii- We shall assume that the incident and target particles have no spin, of course for the sake of simplicity.

iii- We shall assume that the target is thin enough so that we can neglect the multiple scattering processes, that is, the processes during which a particular incident particle is scattered several times before leaving the target.

iv- We shall also assume that the interaction between the incident and target particles can be described by a potential energy 
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 which depends only on the relative position 
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of the particles. In the centre of mass reference frame, the problem then reduces to the study of the scattering of a single particle (of mass 
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) called reduced mass of the system by the potential 
[image: image10.wmf]()

V

r

.

Before we proceed further, let us mention some of the scattering experiments which provide the following useful information,

i- Rutherford’s experiment on the scattering of 
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-particles by nuclei provided the experimental basis for the nuclear atom model that eventually led to the Bohr atom model and finally to quantum mechanics.

ii- Scattering of nucleons of various energies from a nucleus gives information about the strength and range of nuclear forces also about structure of nucleus.

iii- Scattering of high energy electrons from nuclei and as well as from nucleons has helped in determining the charge distribution in nucleus and even in a nucleon.

iv- Scattering of neutrons from a nucleus reveals magnetic properties of the nucleus.

General Description
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In Preparing an scattering experiment, we need the following:
a- Incident beam: (particles) with initial energy 
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b- Target: (short range potential in which 
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c- Detector: to detect the scattered particles

The incident particle describe by a plane wave in the form:
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The scattered waves describe by spherical wave in the form:


[image: image15.wmf]ˆ

(,)()

ikrikr

sc

ee

ffr

rr

yqj

=º



[image: image16.wmf](,)

f

qj

 = scattering amplitude.

Our Aim: To solve the time independent Schrödinger equation (TISE):
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 represents the incident and the scattered particles, with the asymptotic solution:
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Solving TISE is not an easy task, so we have to use an approximation, such as:
1- Born approximation

2- Partial wave analysis

Differential Cross Section

Consider target T, a flux, 
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  of particles is incident on T. Define the following:
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per unit time.

ND = Number of particles collected by a detector which subtends solid angle 
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then
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Clearly
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We write: Number of particles scattered into given direction,


[image: image27.wmf]scincinc

(,)

(,)(,)

d

NJJ

d

=º

W

sqf

qfsqf


We define
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   Differential cross section

It has units of AREA.

The total cross section
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The incident current density is given by:
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The scattered current density is given by:
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Hence:
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In case of elastic collision, i.e. 
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Example: If 
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, find the total cross section

Answer:
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We have used the standard integral 
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The Born Approximation

Integral scattering equation for stationary states

The time independent Schrodinger equation in the form:
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could be changed to the non-homogeneous equation:
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with  
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.  We claim that the solutions may be written in the form:
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where 
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 is a solution of the homogeneous equation:
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and G(r) is a solution of  
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H. W. Proof the claim:  
The solutions of  
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. These are two linearly independent solutions of a second order differential equation. One is representing the outgoing wave, 
[image: image48.wmf]ikr

e

+

, and the other the incoming wave, 
[image: image49.wmf]ikr

e

-

. We will be interest in outgoing wave.

The Born approximation
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This procedure can be repeated and yields the Born expansion. 
The Born approximation is the first term in the Born expansion.
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This yields an integral expression for the scattering amplitude 
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Exercise: Simplify the first Born approximation in the case that  
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Answer: In the following figure, one finds:
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(a)                   
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(b)                                
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From the above two equations we have:
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Then
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And compare with 
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Using 
[image: image60.wmf]'

(')

i

ikr

i

re

=

j

, then


[image: image61.wmf]'3

1

(,)(')',

4

i

Bfi

feUrdr

qf

p

-×

=-=-

ò

qr

qkk



[image: image62.wmf]momentum transfer
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In case of elastic collision: 
[image: image63.wmf]if

kk

=



[image: image64.wmf](

)

(

)

2

222222

||2cos21cos4sin(/2)

ififif

kkkkkk

=-=+-=-=

qqq

qkk


[image: image148.png]




H.W. For central potential, use the relation
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Answer:
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Validity of the Born-approximation
In the integral 
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we are replacing the exact solution 
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by the asymptotic incident wave eikz'.  Therefore 
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 and eikz' should not be too different inside the range of the potential, i.e. in the region where U(r) contributes appreciably to the integral.

We therefore need that
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Mathematically is defined as:
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In the high k limit this inequality is easily satisfied because the integrand oscillates rapidly.  We can also satisfy the condition if the scattering potential is weak.

Summary
We are looking for a solution of the time independent Schrodinger equation (TISE):
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where
[image: image74.wmf]()
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 represents the incident and the scattered particles, with the asymptotic solution:
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The relation between the differential cross section, 
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, and the scattering amplitude, 
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The (first) Born approximation of the scattering amplitude, 
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Where 
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Using the relation
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Useful integrals
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Applications
1- 
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Where we used 
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2- Gaussian potential     
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3- The Yukawa potential:       
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where we used the standard integral: 
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And
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Where we used the standard integral: 
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 4- The Coulomb potential:            
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This is Yukawa potential with 
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This is Rutherford’s formula.  The Born approximation for the Yukawa potential gives Rutherford’s formula as 
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5- The exponential potential  
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where we used the standard integral: 
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H.W. calculate 
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for the exponential potential. Here is a summary of the most famous potentials:
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What are the problems with the Born approximation?
1- Not  working for low scattering energies,

2- Can not differentiate between the attractive and repulsive potentials.

3- Not applicable for hard sphere problem (Strong potential). 

So, we have to go for another approximation.
Example:   The elastic scattering of fast electron by a complex atom can be represented fairly accurately by assuming a spherically symmetric potential of the form:
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where is the first term is the potential due to the nucleus and the second due to the atomic structure; 
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 is the density of the electrons at 
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a-  Derive an expression for the scattering amplitude in terms of 
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b-  Use 
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to calculate the total cross section for the scattering of fast electrons by a hydrogen atom.

c- Discuss the cases: I- high energy and large angle scattering, II- low velocity and small angle scattering.

Answer:
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where 
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 is the atomic scattering form factor.
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 EMBED Equation.DSMT4  [image: image144.wmf]2

'3

222

2

()(')'[1()]

2

i

B

Ze

feVrdrF

q

mm

q

p

-×

=-=-

ò

hh

qr

q


If we assume 
[image: image145.wmf]()
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=0, i.e. that the incoming electron sees a screened nucleus of charge 1, and we obtain Rutherford scattering amplitude.
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