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Real-space renormalization 
 
Until the early 1970s all calculations of critical exponents were made either: 

1- by exactly solving a model for its thermodynamic properties and then examining its 
behavior in the critical regime (as with the Ising model in one and two dimensions) or  

2- by direct numerical simulations (as with the three-dimensional Ising model) or by 
extrapolation from approximate solutions which become invalid in the vicinity of a phase 
transition (high-temperature expansions, for example).  

 
However, in a now-famous paper published in 1966, Kadanoff presented arguments which, he 
maintained, would allow one to simplify calculations in the critical regime to the point at 
which critical exponents could be extracted, without ever working out the partition function 
for the problem. However, though Kadanoff’s ideas showed great physical intuition about the 
processes giving rise to critical phenomena, they lacked the mathematical precision which 
might have given one faith in his results. A more quantitative realization of the argument was 
given by Wilson and others, who introduced the so-called renormalization group techniques 
(Wilson and Kogut 1974). In their present state, these techniques divide roughly into two 
classes. There are those which were developed by pursuing the analogy between statistical 
mechanics and quantum field theory, which we will refer to as ‘field-theoretical’ or ‘k-space’ 
techniques, and then there are the real-space renormalization techniques, which are simpler 
and closer in spirit to the original ideas of Kadanoff. In the later chapters of this book we will 
discuss field-theoretical methods extensively; this chapter deals with the real-space methods. 
The term ‘real-space’ in this context refers to the fact that these techniques involve quantities 
dependent on position coordinates in ordinary space. The field-theoretical techniques, 
conversely, are simplest when the equations are written in terms of spatially Fourier-
transformed quantities, hence the name ‘k-space’ techniques.  
 

Renormalizing the lattice 
 

Real-space renormalization techniques are applicable only to: 
 models based on a lattice. And more than this,  
 the lattice must be regular in a very special kind of way; it must have a ‘discrete scaling 

symmetry’.  
To understand what this means consider taking a lattice and blocking it. This means dividing the 
sites of the lattice into groups or blocks, and then replacing each block by just one single site, 
which may be at the position occupied by one of the sites in that block, or at some other position 
within the area covered by the block. The lattice has a discrete scaling symmetry if we can block 
it in this way so as to produce a lattice exactly like the one we started with, except for an increase 
in the lattice parameter “a”, 'a a ba→ ≡ . The process of renormalizing the lattice is then 
completed by reducing all dimensions in the new lattice by a factor of b so that we end up with 
exactly the same lattice that we started with. 

Actually, one thing does change when we renormalize our lattice. If we group sites into blocks 
containing p sites on average, then the renormalized lattice will contain fewer sites than the 

original by a factor of old

new

N
N

p = . This will be important when we come to define site-averaged 

quantities, such as susceptibility, on our renormalized lattice. Since we have scaled our whole 
lattice down by a factor of b , its volume must have shrunk by a factor of db  where d is the 
number of spatial dimensions. Clearly then, if the sites in the renormalized lattice are arranged in 
exactly the same way as those in the original lattice, their number must have been reduced by a 
factor of dp b= . 
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The most common lattice displaying a discrete scaling symmetry is the square lattice. Figure 1 
illustrates the renormalization of the square lattice in two dimensions. In this case 4p = , 2b =  
and the lattice is left with a quarter the number of sites it started with. Clearly this transformation 
may also be performed on a rectangular lattice. Actually this is not the only way to block a square 
lattice. Figure 2 illustrates an alternative method. In this case 2b =  and the number of sites is 
halved. Figure 3 shows how one would renormalize a triangular lattice. Here 3b =  and the 
renormalized lattice has a third as many sites as the original one. 

 

 
Figure 1 Renormalization of a square lattice. The linear dimensions of the lattice on the right must be shrunk by a 

factor of 2b = to render it similar to the original one. The final lattice therefore has fewer sites than the original by a 

factor of 2 4b = .   ( )2 4dp b b= = =  

 
 
Figure 2 An alternative blocking scheme for renormalizing the square lattice. Here all length scales must be 
divided by a factor of 2b = . The final lattice will therefore have fewer sites than the original by a factor of 

2 2b = . 
 

 
 
Figure 3 Renormalization of a triangular lattice. The linear dimensions of the lattice on the right must be shrunk 
by a factor of 3b = to render it similar to the original one. The final lattice therefore has fewer sites than the 

original by a factor of 2 3b = . 
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                              (a)                                                      (b) 
 
Figure 4: Cartoon of the renormalization idea: Close to the phase transition, the correlation length ξ diverges 
indication the onset of off-diagonal long range order. The Hamiltonian and all coupling constants, however, are given 
on a length scale /a ξ  The Renormalization group transformation maps the Hamiltonian for the situation (a) onto a 
Hamiltonian for which ' .a ξ≥  This is done by consecutive integrating out modes of short wave length and 

enlarging the effective lattice size to ' na s a= . Then, all physical quantities are calculated perturbatively and there 
corresponding values with respect to the original model are obtained by using the scaling laws close to the fixed-
point. 

 

In summary: What is the renormalization group? The renormalization group consists of 
analytic and computational schemes to integrate systematically over degrees of freedom in a 
system near a critical point. After integration, the control parameters, for example temperature 
and magnetic field in a magnetic system, are rescaled to restore the system Hamiltonian to its 
original form. The behavior of the control parameters under this rescaling enables calculation of 
the critical behavior of the model. 
 

 
Figure: Block-spin transformation: averaging the spins in a block, and then rescaling the lattice to 
the original size. In more than one dimension, the indirect interaction between B and C gives rise 
to next-to-nearest-neighbor interactions of the block spins.  
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Quite generally, one can expect the following advantages from such a renormalization group 
transformation: 

i- The new coupling constants could be smaller. By repeated applications of the 
renormalization procedure, one could thus finally obtain a practically free theory, without 
interactions. 

ii- The successively iterated coupling coefficients, also called “parameter flow”, could have a 
fixed point, at which the system no longer changes under additional renormalization group 
transformations. Since the elimination of degrees of freedom is accompanied by a change 
of the underlying lattice spacing, or length scale, one can anticipate that the fixed points 
are under certain circumstances related to critical points. Furthermore, it can be hoped that 
the flow in the vicinity of these fixed points can yield information about the universal 
physical quantities in the neighborhood of the critical points. 

 
The scenario described under (i) will in fact be found for the one-dimensional Ising model, and 
that described under (ii) for the two-dimensional Ising model. 
 
Fixed Point (FP):- A point that remains unchanged under application of recursion relations is a 
fixed point. A fixed point is stable if nearby points flow towards it and unstable if nearby points 
flow away from it. Usually we use a set of recursion relations, such as those used in 
renormalization group calculations, lead to flows (changes in the variables upon successive 
iterations) in their parameter space. In other words, it is a point at which the system becomes 
invariant under a change of length scale. That means the correlation length is either 0 or ∞ . The 
latter corresponds to a critical point, which is physically interesting case. The case with zero 
correlation length (Trivial or Gaussian), as we have encountered in the one-dimensional Ising 
model, corresponding to infinite temperature, and usually can be recognized and rejected. 



Prof. Dr. I. Nasser                                               Phys 630, T-122                                                           28-Feb-13 
Real_space_RGT 
http://xbeams.chem.yale.edu/~batista/vaa/node41.html 
 

 5

Renormalization Group Theory 
The goal of this section is to introduce several concepts of Renormalization Group Theory 

and to illustrate such concepts with the 1-dimensional Ising model.  
Consider the task of computing the canonical partition function Z  of the one-dimensional Ising 
model in the absence of an external magnetic field in the following:  
( ) 1 2 2 3 1 2 3 11 2

1 2 1 2

( ), N N

N N

K S S S S S S KS S KS SKS S

S S S S S S

Z K N e e e e e+ + += =∑∑ ∑ ∑∑ ∑     (317) 

where coupling parameter K Jβ=  and N is the total number of spins. Note that according to Eq. 
(317),  

 
The renormalization group strategy for the 1-dimensional Ising model can be described as 
follows: 

 
Figure: Decimation scheme: Every second spin is integrated out to reach a renormalized new system 

with only half the spins of the previous system. 
 

Step (1): Sum over the even numbered spins in Eq. (317). Note that summing, e.g., over 2S  we 
obtain  

 
Summing over 2S  gives: 1 2 2 3 1 3 1 3

2

( ) ( ) ( )K S S S S K S S K S S

S

e e e+ + − += +∑  

and for 4S  we obtain,  

 
(320)

and summing over all even numbered spins we obtain  

 
(321)

 
Step (2): Rewrite the remaining sum (i.e., the sum over odd numbered spins introduced by Eq. 
(321)) by implementing the Kandanoff transformation  

 
(322)

where both ( )f K  and 'K  are functions of K . Substituting Eq. (322) into Eq. (321) we obtain  
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(323)

Note that such transformation allow us to rewrite the partition function ( , )Z K N  in terms of a 
renormalized partition function ( ', / 2)Z K N  (i.e., a partition function with new parameters that 
describes an Ising model with half the number of spins and a different coupling parameter 'K ).  
   
In order to determine the renormalization group equations (i.e., 'K  and ( )f K  as a function of 
K ) and show that 'K K< , we note that when ' 1S S= = ± , Eq. (322) gives  

 
(324)

and when ' 1S S= − = ± , Eq. (322) gives  

 (325)
Therefore, solving for ( )f K  in Eq. (325) and substituting into Eq. (324) we obtain  

1' ln[cosh(2 )]
2

K K=                                                          (326) 

and substituting Eq. (326) into Eq. (325) we obtain  
1/ 2( ) 2cosh (2 )f K K=                                                          (327) 

Eqs. (326) and (327) are called renormalization group equations since they provide the 
renormalization scheme. 
Step (3): Go to (1), replacing ( , )Z K N  by ( ', / 2)Z K N .Step (3) is repeated each time on the 
subsequent (renormalized) partition function, (i.e., ( '', / 4)Z K N , ( ''', / 8)Z K N ,  ( , /16)IVZ K N , 

( , / 32)VZ K N ,...etc.) until the renormalized parameters become approximately constant (i.e., 
until the renormalized parameters reach a fixed point and become invariant under the Kadanoff 
transformation). Note that, according to Eq. (326), ' '' '''K K K K> > > , etc., so after a few 
iterations the coupling parameter becomes negligibly small and the partition function can be 
approximated by using Eq. (318) as follows:  

( ) ( ), 0,( ) ( ') ( ")Z K N Z Nf K f k f k=  
and 

 
The renormalization group strategy thus involves computing the total sum, introduced by Eq. 
(317), step by step. The success of the approach relies on the fact that after a few iterations the 
sum converges to an expression that can be easily computed.  
Sometimes the partition function is known for a specific value of the coupling parameter (e.g., 
for ' 0K ≈  in the 1-dimensional Ising model). The renormalization group theory can then be 
implemented to compute the partition function of the system for a different value K of the 
coupling constant. This is accomplished by inverting Eq. (326) as follows:  

 
and computing ( , )Z K N  from ( , / 2)Z K N  according to Eq. (323).  
One could also define the function ( )g K as follows  
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and substituting Eq. (329) into Eq. (323) we obtain  

 
Therefore, given the partition function ( ', )Z K N  for a system with coupling 

constant 'K , one can compute ( ')g K  and K according to Eqs. (330) and (329), respectively. 

The partition function  ( )( , ) Ng KZ K N e=  is then obtained by substituting the values of ( ')g K  
and K  in Eq. (330). Note that according to this procedure, 'K K>  and the subsequent 
iterations give larger and larger values of K . This indicates that the flow of  has only two 
fixed points at 0K =  (e.g., at infinite temperature) and K = ∞  (e.g., at 0 K).  
   

Systems with phase transitions, however, have nontrivial fixed points at intermediate 
values of K . For instance, following a similar procedure, as the one described in this section, it is 
possible to show that the 2-dimensional Ising model has an additional fixed point cK  and that the 
heat capacity 2 2( ) /C d g k dk=   diverges at cK . Thus, cK  determines the critical temperature 
where the system undergoes a phase transition and spontaneously magnetizes. 
 
Note that:   

A- For the coupling constant
1' ln[cosh(2 )]
2

K K= , we have two fixed points,  

1- One stable (disordered)  at 0,K = ⇒  T = ∞ and   
2-  The other unstable (ordered) at , 0K T= ∞ ⇒ = .  

We do not find a fixed point at a finite value of K  which states that no phase transition occurs. The 
unstable fixed point corresponds to zero-temperature limit where the spins order in the ground state. The 
stable fixed point 0K =  is the limit of non-interacting spins. The renormalization group treatment which 
had been here performed exactly, shows that there is no phase transition at a finite temperature. 

 
Figure: Flow of the coupling constant K Jβ= of the one-dimensional Ising model under the renormalization group scheme. For 

any finite coupling and temperature the flow goes towards 0K =  the limit of completely decoupled spins. 
 
Therefore we find that starting at any finite value of K  leads us through successive application of the 
decimation procedure towards weaker and weaker coupling K . The fixed point of 0K =  eventually 
corresponding to non-interacting spins is the ultimate limit of disordered spins. Through the 
renormalization group procedure it is possible to generate an effective model which can be solved 
perturbatively and obtain the essential physics of the system. 
 
 
B- For the coupling constant 
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2 2 2
4

2

1 1 1' ln[cosh(2 )] ln[ ] ln [1 ]
2 2 2 2 2
1 1ln ln 2
2 2 2

K K K
K

K

e e eK K e

e K

−
−+

= = = +

< = −
 

i.e., 'K  is smaller than K , and so by repeatedly doubling the size of the blocks one can proceed 
to a very small value of interactions between spins far away from each other. Therefore, on going 
in the reverse direction from small to large interactions, one can start with a very small value of 
the interaction, say 'K  = 0.01, so that ( ') 2NZ k ≈ and ln 2f ≈ . Using the above equations, one 
can find the renormalized interaction and the appropriate free energy. 

 
The one-dimensional Ising model does not show a phase transition at a finite temperature, 

and our analysis was only designed to show by means of a simple example how the RG method 
works. 
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H.W. Discuss the possibility of the existence of the fixed point for 1D-Ising model. . Do it from 
David chandler, “Introduction to modern statistical mechanics” (Oxford University Press 1987). 
 
Note that: the exact answer for the partition function is given by: 

1 1, 2cosh( )N
NZ Z Z K= =  

where K Jβ=  and N is the total number of spins. Using the partition function in the form 

( ) 1 2 2 3 1 2 3 11 2

1 2 1 2

( ), N N

N N

K S S S S S S KS S KS SKS S

S S S S S S

Z K N e e e e e+ + += =∑∑ ∑ ∑∑ ∑     (30) 

(I) Remove a finite fraction of the degrees of freedom by averaging (summing) over them, 
say even numbered spins s2,s4,… then 

 
(II) Cast Eq. (31) into a form that makes it looks the same as Eq. (30) with N/2  and (perhaps) 

a different coupling constant K . Suppose that, for all S, and , we can write 

 
Then 

[ ] ( )/ 2

2
( , ) ( ) ,N NZ K N f K Q K=                                       (32) 

(III) Solve for ( )f K  an K , one finds 

 
(IV) Define ln ( )Z N g k=  as a free energy, and since free energies are extensive, we expect 

( )g k  to be intensive-that is, independent of system size. 

(V) From (32), we have { } [ ] ( )ln
2 2

ln ( , ) ( ) ln ,N NZ K N f K Q K= + , we have 

[ ] ( )1 1
ln

2 2
( ) ( )g k f K g K= + , or since 1/ 2 ( )2( ) 2cosh Kf k = , then 

 
Equations (33) and (34) are called renormalization group (RG) equation. An alternative set of 
RG equations would be 

 
Equation (35) could be solved by iteration to find two fixed points at K = 0 and ∞ . There is 
no phase transition in one-dimensional Ising model except at T= 0. 
From (30) one expects ln ( )Z Ng K= . 
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H.W. For the partition function: 
( ) 0 1 2 2 3 1

1 2

( ), N

N

NK K S S S S S S

S S S

Z K N e + + + +=∑∑ ∑  

Prove that: 
1' ln[cosh(2 )]
2

K K=  

0 0
1' 2 ln[4cosh(2 )]
2

K K K= +  

 
 
  
 


