Exercise: 8-14 (Statistical Mechanics and Thermodynamics, Claude Garrod)
Apply the Bethe-Peierls approximation to an Ising model, with no external
field, on a 2D hexagonal lattice?

Solution

Fig.1 shows a portion of a hexagonal lattice. A central spin o, and its three neighboring spins
o, ,o0, and o,, are isolated from the rest of the lattice by replacing all the shaded spins by some

yet to be determined average value o. Although the external field is zero, it is very convenient
first to include an external field term H'for spin 1 and different value H for spins 2, 3, and 4.
Then, at the end we will set H and H'equal to zero.
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Q

Fig.1 A section of a hexagonal lattice.

The Hamiltonian of the system is given by:
N N
PE =-1J zaiaiﬂ -H zai
i=1 i=1

PE =-H'o, -H (0, +0, +0,)-J (2;'+0'1)(0'2 +0, +0,)
With the definitions
j=pJ,h=pHand h'= gH’

PE =-h'o, —h(o, +0, +0,)- j(00,+ 00, + 00, + 00, + 00, + 00, + 0,0, + 0,0, +0,0,)

= PE=-h'o, -h(o, +0, +0,) - j(2;'+0'1)(0'2 +0, +0,)



The partition function of the system is given by summing e’ over all possible values of the four
spin values.

Z=33>>explh'c, +h(c, +0, +0,)+ [(20+07,)(0, +0; +0,)]

Z=Y3>%expl'o, +(h+2jo+ jo,)(o, +0, +0,)]

oy 0, O3 Oy

Z :Zexp(h’ol)ZZZexp[(h+2jE+ jo) (o, +o, +0,)]

o, O3 Oy

Z =Y exp(h'c,)> expl(h+2jo + jo)o, 1D expl(h+2jo + jo,)o, 1> expl(h+ 2 jo + jo,)o, ]

Z=Y exp(h'e;)> expl(h+2jo+ jo)o1> expl(h+2jo+ jo)o 1D expl(h+2jo+ jor)o |

oy o

Z =) exp(h'c;)[>_exp[(h+2 jo+jo)o I

oy o

Z =Y exp(h'o,)[exp(h+2jo+ jo,) +exp(-h-2jo - jo,) T

o1

Z =Y exp(ho,)[2cosh(h+2jo + jo,) I

o1

Z =8> exp(h'o, )[cosh*(h+2jo + jo,) ]

Z =8[exp(h’)cosh®(h+2jo + j) +exp(—h’)cosh®(h+2jo— j) ]
Since,

1oz 167
(o) =75 and (o, +0y+0,)=——-

= (o,) :g[exp(h')cosh3(h+2jg+ j)—exp(=h")cosh®*(h+2jo—j) ]
_cc=h+2jo—j,then
Define:
(o, +0,+0,) = %[exp(h "Ycosh?(cc)sinh(h +2j o + j)+exp(—h") cosh?(cc)sinh(cc) ]
Thus, the partial derivatives at h'=h =0,
(6)) :g[cosh3(2j5+ j)—cosh®(2jo—j) ]
(o, +a3+04>:%[c05h2(2j5+ j)sinh(2jo + j)+cosh?(2jo— j)sinh(2jo - j) ]

Setting (o, + o, + 0,) =30;,)

—[cosh?(2jo + j)sinh(2jo + j) +cosh?(2jo — j)sinh(2jo - j) ]=[cosh®*(2 jo + j)—cosh®*(2jo— j) ]



exp(2jo + j) +exp(-2jo - j)]z [e><|0(2l'5”r j)-exp(-2jo - J)]

=1 2 2
JOPQio=Drep(2io+ )y, expRic—i)—exp(2jo+ i),
2 2
exp(2jo + ) +exp(=2jo — )y exp(2jo - j) +exp(=2jo + )5
=[ 5 F-1 , ]

Making the substitutions,
x=exp(2jo) and y=exp(j)
One can take the formidable-looking polynomial equation,
(xy +x 7Ty )2 (xy —x Ty )+ (xy THx Ty )T (xy Tex Ty ) =(xy +x Ty P =y T Hx Ty )
Multiplying the above equation by x*y® and collecting the terms gives the equation,
x®—(y* =2y*)x* + (y* - 2y*)x*-1=0

Letting u = x* and A=y*—2y?, we see that this is a cubic equation for u,

u®—Au®+Au-1=0
The above cubic equation can be written as,

u-1(Uu’-(A-Du+1)=0

Comparing the trivial solution of this equation with that of the mean-field theory, one can
observe that this equation has a trivial solution at u =1while the mean-field theories always have
the trivial solutiono=0. On the other hand, the non-trivial solution of this equation can be
obtained from the simple quadratic equation, u® —(A—-1)+1=0 which is,

u =%(A—1)J_r%w/(A—1)2 -4
Sinceu = x*, U must be positive. Thus, the acceptable solution is,

! =%(A-1)+%J(A—1)2—4

This solution is real if and only if A>3, which implies thatyz@. Thus, the Bethe-Peierls
approximation predicts a ferromagnetic phase transition at a Curie temperature given by
setting, e’ = /3.

J 1

. . J A = J 1
Since, =fl=— =e"“=33=—==log(3
1=/ KT KT, 2 93
Thus, T.=2J/109(3)~1.82J

The exact relation, known from the Onsager solution, T, = 1.518649J. Since the coordination

number of the hexagonal lattice is three; simple mean-field theory would predict that the phase
transition occurs at T, = 3J. Thus, we see that the Bethe-Peierls approximation is a substantial

improvement on the results of simple mean-field theory.



