<u>Exercise: 8-14</u> (Statistical Mechanics and Thermodynamics, Claude Garrod)

Apply the Bethe-Peierls approximation to an Ising model, with no external field, on a 2D hexagonal lattice?

Solution

Fig.1 shows a portion of a hexagonal lattice. A central spin σ_1 and its three neighboring spins σ_2 , σ_3 and σ_4 , are isolated from the rest of the lattice by replacing all the shaded spins by some yet to be determined average value σ . Although the external field is zero, it is very convenient first to include an external field term H' for spin 1 and different value H for spins 2, 3, and 4. Then, at the end we will set H and H' equal to zero.

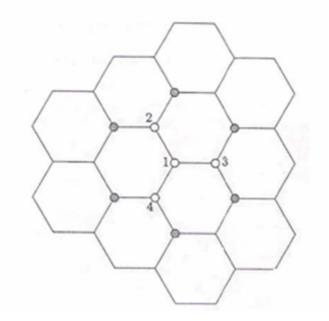


Fig.1 A section of a hexagonal lattice.

The Hamiltonian of the system is given by:

$$\beta E = -J \sum_{i=1}^{N} \sigma_i \sigma_{i+1} - H \sum_{i=1}^{N} \sigma_i$$

$$\beta E = -H' \sigma_1 - H (\sigma_2 + \sigma_3 + \sigma_4) - J (2\sigma + \sigma_1)(\sigma_2 + \sigma_3 + \sigma_4)$$

With the definitions

$$j = \beta J, h = \beta H \text{ and } h' = \beta H'$$

$$\beta E = -h'\sigma_1 - h(\sigma_2 + \sigma_3 + \sigma_4) - j(\sigma\sigma_2 + \sigma\sigma_2 + \sigma\sigma_3 + \sigma\sigma_3 + \sigma\sigma_4 + \sigma\sigma_4$$

The partition function of the system is given by summing $e^{\beta E}$ over all possible values of the four

$$Z = \sum_{\sigma_{1}} \sum_{\sigma_{2}} \sum_{\sigma_{3}} \sum_{\sigma_{4}} \exp[h'\sigma_{1} + h(\sigma_{2} + \sigma_{3} + \sigma_{4}) + j(2\overline{\sigma} + \sigma_{1})(\sigma_{2} + \sigma_{3} + \sigma_{4})]$$

$$Z = \sum_{\sigma_{1}} \sum_{\sigma_{2}} \sum_{\sigma_{3}} \sum_{\sigma_{4}} \exp[h'\sigma_{1} + (h+2j\overline{\sigma} + j\sigma_{1})(\sigma_{2} + \sigma_{3} + \sigma_{4})]$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) \sum_{\sigma_{2}} \sum_{\sigma_{3}} \sum_{\sigma_{4}} \exp[(h+2j\overline{\sigma} + j\sigma_{1})(\sigma_{2} + \sigma_{3} + \sigma_{4})]$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) \sum_{\sigma_{2}} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma_{2}] \sum_{\sigma_{3}} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma_{3}] \sum_{\sigma_{4}} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma_{3}]$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) \sum_{\sigma} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma] \sum_{\sigma} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma] \sum_{\sigma} \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma]$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) [\exp(h+2j\overline{\sigma} + j\sigma_{1}) + \exp[(h+2j\overline{\sigma} + j\sigma_{1})\sigma]^{3}$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) [\exp(h+2j\overline{\sigma} + j\sigma_{1}) + \exp(-h-2j\overline{\sigma} - j\sigma_{1})]^{3}$$

$$Z = \sum_{\sigma_{1}} \exp(h'\sigma_{1}) [\cosh^{3}(h+2j\overline{\sigma} + j\sigma_{1})]$$

$$Z = 8 [\exp(h'\sigma_{1}) [\cosh^{3}(h+2j\overline{\sigma} + j\sigma_{1})]$$
Since,

$$\langle \sigma_1 \rangle = \frac{1}{Z} \frac{\partial Z}{\partial h'}$$
 and $\langle \sigma_2 + \sigma_3 + \sigma_4 \rangle = \frac{1}{Z} \frac{\partial Z}{\partial h}$

$$\Rightarrow \langle \sigma_1 \rangle = \frac{8}{Z} \left[\exp(h') \cosh^3(h + 2j\overline{\sigma} + j) - \exp(-h') \cosh^3(h + 2j\overline{\sigma} - j) \right]$$

$$cc = h + 2j\overline{\sigma} - j$$
, then Define:

$$\langle \sigma_2 + \sigma_3 + \sigma_4 \rangle = \frac{24}{Z} \left[\exp(h') \cosh^2(cc) \sinh(h + 2j\sigma + j) + \exp(-h') \cosh^2(cc) \sinh(cc) \right]$$

Thus, the partial derivatives at h' = h = 0,

$$\langle \sigma_1 \rangle = \frac{8}{Z} \left[\cosh^3(2j\overline{\sigma} + j) - \cosh^3(2j\overline{\sigma} - j) \right]$$

$$\langle \sigma_2 + \sigma_3 + \sigma_4 \rangle = \frac{24}{Z} \left[\cosh^2(2j\overline{\sigma} + j) \sinh(2j\overline{\sigma} + j) + \cosh^2(2j\overline{\sigma} - j) \sinh(2j\overline{\sigma} - j) \right]$$

Setting $\langle \sigma_2 + \sigma_3 + \sigma_4 \rangle = 3 \langle \sigma_1 \rangle$

$$\Rightarrow [\cosh^2(2j\overline{\sigma}+j)\sinh(2j\overline{\sigma}+j)+\cosh^2(2j\overline{\sigma}-j)\sinh(2j\overline{\sigma}-j)] = [\cosh^3(2j\overline{\sigma}+j)-\cosh^3(2j\overline{\sigma}-j)]$$

$$\Rightarrow \left[\frac{\exp(2j\overline{\sigma}+j) + \exp(-2j\overline{\sigma}-j)}{2}\right]^{2} \left[\frac{\exp(2j\overline{\sigma}+j) - \exp(-2j\overline{\sigma}-j)}{2}\right]$$

$$+\left[\frac{\exp(2j\overline{\sigma}-j) + \exp(-2j\overline{\sigma}+j)}{2}\right]^{2} \left[\frac{\exp(2j\overline{\sigma}-j) - \exp(-2j\overline{\sigma}+j)}{2}\right]$$

$$=\left[\frac{\exp(2j\overline{\sigma}+j) + \exp(-2j\overline{\sigma}-j)}{2}\right]^{3} - \left[\frac{\exp(2j\overline{\sigma}-j) + \exp(-2j\overline{\sigma}+j)}{2}\right]^{3}$$

Making the substitutions,

$$x = \exp(2j\overline{\sigma})$$
 and $y = \exp(j)$

One can take the formidable-looking polynomial equation,

$$(xy + x^{-1}y^{-1})^2 (xy - x^{-1}y^{-1}) + (xy^{-1} + x^{-1}y)^2 (xy^{-1} - x^{-1}y) = (xy + x^{-1}y^{-1})^3 - (xy^{-1} + x^{-1}y)^3$$

Multiplying the above equation by x^3y^3 and collecting the terms gives the equation,

$$x^{6} - (y^{4} - 2y^{2})x^{4} + (y^{4} - 2y^{2})x^{2} - 1 = 0$$

Letting $u = x^2$ and $A = y^4 - 2y^2$, we see that this is a cubic equation for u,

$$u^3 - Au^2 + Au - 1 = 0$$

The above cubic equation can be written as,

$$u-1(u^2-(A-1)u+1)=0$$

Comparing the trivial solution of this equation with that of the mean-field theory, one can observe that this equation has a trivial solution at u = 1 while the mean-field theories always have the trivial solution $\sigma = 0$. On the other hand, the non-trivial solution of this equation can be obtained from the simple quadratic equation, $u^2 - (A-1) + 1 = 0$ which is,

$$u = \frac{1}{2}(A-1) \pm \frac{1}{2}\sqrt{(A-1)^2 - 4}$$

Since $u = x^2$, u must be positive. Thus, the acceptable solution is,

$$u = \frac{1}{2}(A-1) + \frac{1}{2}\sqrt{(A-1)^2 - 4}$$

This solution is real if and only if $A \ge 3$, which implies that $y \ge \sqrt{3}$. Thus, the Bethe-Peierls approximation predicts a ferromagnetic phase transition at a Curie temperature given by setting, $e^j = \sqrt{3}$.

Since,
$$j = \beta J = \frac{J}{kT} \Rightarrow e^{\frac{J}{kT_c}} = 3^{\frac{1}{2}} \Rightarrow \frac{J}{kT_c} = \frac{1}{2} \log(3)$$

Thus,
$$T_c = 2J / \log(3) \approx 1.82J$$

The exact relation, known from the Onsager solution, $T_c = 1.518649J$. Since the coordination number of the hexagonal lattice is three; simple mean-field theory would predict that the phase transition occurs at $T_c = 3J$. Thus, we see that the Bethe-Peierls approximation is a substantial improvement on the results of simple mean-field theory.