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Classical Statistics of Paramagnetism  

The most famous types of Magnetic materials are:
(i) Paramagnetic: A property exhibit by substances which, when placed in a magnetic field, are magnetized parallel to the field to an extent proportional to the field (except at very low temperatures or in extremely large magnetic fields).

(ii) Ferromagnetic:  A property, exhibited by certain materials, alloys, and compound of the transition (iron group), rare-earth, and actinide elements, in which the internal magnetic moments spontaneously organized in a common direction; gives rise to a permeability considerably greater than that of vacuum, and to magnetic hysteresis.    

(iii) Diamagnetic: Having a magnetic permeability less than one; materials with this property are repelled by a magnet and tend to position themselves at right angles to magnetic lines of force. 
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FiG. 3.10. The entropy of a system of magnetic dipoles (with J = ) as a function of tempera-
ture.

kT is of the order of ¢ and approaches the limiting value Nk In 2 for kT > . (This limitir
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	Permeability
	Comments

	Paramagnetic
	Aluminum
	positive
	>1, (1.001)
	Temperature dependant

	Ferromagnetic
	Iron, nickle
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	104
	Magnetic domain,
 hysteresis

	Diamagnetic
	bismuth
	negative
	< 1, (0.999)
	


Magnetic susceptibility 
[image: image3.wmf]c

 represents the response of a system to the external field.  
Hysteresis means the dependence of the polarization of ferromagnetic materials not only on the applied (magnetic) field but also on their previous history. 
Magnetic domain, a region of ferromagnetic material within which atomic or molecular magnetic moments are aligned parallel. 
Permeability, a factor, characteristic of a material, that is proportional to the magnetic induction produced in a material divided by the magnetic field strength; it is a tensor when these quantities are not parallel.

Consult Phys-102 book for more details discussion.
	Type of Magnetism
	Susceptibility
	Atomic / Magnetic Behaviour
	Example / Susceptibility

	Diamagnetism
	Small & negative.
	Atoms have no magnetic moment
	[image: image1.wmf]c


	Au
Cu
	-2.74x10-6
-0.77x10-6

	Paramagnetism
	Small & positive.
	Atoms have randomly oriented magnetic moments
	[image: image168.wmf]m


	β-Sn
Pt
Mn
	0.19x10-6
21.04x10-6
66.10x10-6

	Ferromagnetism
	Large & positive,
function of applied field, microstructure dependent.
	Atoms have parallel aligned magnetic moments
	[image: image169.wmf]z


	Fe
	~100,000

	Antiferromagnetism
	Small & positive.
	Atoms have mixed parallel and anti-parallel aligned magnetic moments
	[image: image170.wmf]m
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	Cr
	3.6x10-6

	Ferrimagnetism
	Large & positive,
function of applied field, microstructure dependent
	Atoms have anti-parallel aligned magnetic moments
	[image: image171.wmf]H


	Ba ferrite
	~3


Table 2: Summary of different types of magnetic behaviour.
Model: Consider N identical, localized (i.e. distinguishable), practically static, mutually noninteracting and freely orientable dipoles at absolute temperature T and placed in an external magnetic field H pointing along z direction. Then the torque acting on the dipole is given by: 
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 and the (magnetic) potential energy can be written as:
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, where θ is the angle between the magnetic field and the dipole and μ is the magnetic dipole moment.
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1- Qualitative Description:

A non-interacting atom with magnetic dipole moment
[image: image7.wmf]m
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is positive) could be point either parallel or anti-parallel to an external magnetic field H. At temperature T, we have the question:
Q: What is the mean magnetic moment 
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 (in the direction H) of such an atom?

A: There are two possible states, and they are:

	state
	condition
	Magnetic energy
	probability
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Define
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 is a dimensionless parameter which measure the ratio of the magnetic energy 
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, which tends to align the magnetic moment, to the thermal energy 
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	Case 2
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1- Qualitative Description:

the mean magnetic moment 
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is given by:


[image: image30.wmf]()

tanh

H

PP

ee

PP

ee

hh

hh

mm

mmmh

-

+-

-

+-

+-

-

===

+

+


The ‘‘magnetization’’
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, or mean magnetic moment per unit volume, is then in the direction of H and reads
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where n  is the total number of magnetic atoms per unit volume. The above results agree with the qualitative descriptions. Here, 
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 is the ''magnetic susceptibility''. The result 
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is known as Curie's law. At very low temperature 
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 becomes independent of H and equal to the maximum (or ''saturation magnetization”) magnetization which the substance can exhibit. Saturation magnetization means complete alignment of the magnetic dipoles in the field direction.
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Figure:  Total magnetic moment of a spin ½  paramagnet.

Classically, the number of dipoles, dn, having axes within the solid angle 
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 lying between two hollow cones on semi-angles 
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 and 
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Where C is a constant. Each one of these dipoles contributes a component of magnetic moment 
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 to the magnetization, where as the components perpendicular to the field direction cancel each other. Hence the average component of the magnetic moment of each atom along the field direction multiplied by the number of atoms per unit volume, N, gives the magnetization, i.e.,
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Let us define the ratio
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, therefore:
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Example: A N-monatomic Boltzmann ideal gas of spin ½ atoms in a uniform magnetic field, in addition to its usual kinetic energy, a magnetic energy of 
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 per atom, where is the magnetic moment. (It is assumed that the gas is so dilute that the interaction of magnetic moments may be neglected.) 

a- What is the partition function of the system? 
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and the total energy   
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. In summary:

	Quantity
	Formula

	Partition function
	
[image: image50.wmf]spN

2cosh()2cosh()

NN

ZZ

hh

=Þ=



	Helmholtz free energy
	
[image: image51.wmf]ln()ln{2cosh()}

BNB

FNkTZNkT

h

=-=-



	Entropy
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	Internal energy
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	Heat capacity
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	Total magnetic moment
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Notice: 
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Figure:  Heat capacity of spin ½  paramagnet. (Schottky anomaly)
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Figure:  Total magnetic moment of a spin ½  paramagnet.
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Comments:

1- For the internal energy: At low 
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, all the spins are aligned with the field and the energy per spin is close to 
[image: image60.wmf]H

m

-

. However as [image: image61.png]


increases, thermal fluctuations start to flip some of the spins; this is noticeable when 
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 gets very large, the energy tends to zero as the number of up and down spins become more nearly equal. 
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, so it never exceeds one. We can say that: at high temperature, the thermal energy is sufficient to disorder the magnetic dipole orientation.
2- The heat capacity tends to zero both at high and low 
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. At low 
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 the heat capacity is small because 
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, so thermal fluctuations which flip spins are rare and it is hard for the system to absorb heat. This behavior is universal; quantization means that there is always minimum excitation energy of a system and if the temperature is low enough, the system can no longer absorb heat.  The high-
[image: image70.wmf]T

 behavior arises because the number of down-spins never exceeds the number of up-spins, and the energy has a maximum of zero. As the temperature gets very high, that limit is close to being reached, and raising the temperature still further makes very little difference. This behavior is not universal, but only occurs where there is a finite number of energy levels (here, there are only two). Most systems have an infinite tower of energy levels, there is no maximum energy and the heat capacity does not fall off. 
3- It is not easy to attain the maximum of the paramagnetic heat capacity curve as the following calculation shows. The paramagnetic heat capacity becomes important only at very low temperatures. The maximum occurs at 
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4- At zero temperature, the magnetization goes to
[image: image75.wmf]N
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and all the spins are up. There is an order, and so the entropy is zero. The stronger the field, the higher the temperature has to be before the spins start to be appreciably disordered. At high temperatures the spins are nearly as likely to be up as down; the magnetization falls to zero and the entropy reaches a maximum. The entropy of this state is 
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5- If it is possible to excite all the particles to the upper energy state so 
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the system would again be completely ordered and in state of zero entropy. According the equation
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This situation could only be achieved if the temperature T  approached a value of zero from the negative temperature side, i.e. 
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While a negative temperature of this magnitude is not obtainable in practice, it is possible to obtain finite negative temperatures as defined by the above equation.
Model: Consider N identical, localized (i.e. distinguishable), practically static, mutually noninteracting and freely orientable dipoles at absolute temperature T and placed in an external magnetic field H pointing along z direction. Then the torque acting on the dipole is given by: 
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 and the (magnetic) potential energy can be written as:
[image: image81.wmf]q

m

m

cos

.

H

H

E

-

=

-

=

, where θ is the angle between the magnetic field and the dipole and μ is the magnetic dipole moment. The partition function of the system, Z, is given by
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where the first summation for 
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 goes over all sets of orientations of the system. Classically one can have:
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Where 
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. The mean magnetic moment M of the system will indeed be in the direction of the field H; for its magnitude we have:
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Hence, we obtain the mean magnetic moment per dipole as:
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where L(x) is the Langevin’s function, 
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. The dimensionless parameter 
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determines the strength of the (magnetic) potential energy 
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 against the (thermal) kinetic energy 
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. See the plotting of L(x) function.
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If we have n dipoles per unit volume in the system, then the magnetization of the system, viz. the mean magnetic moment per unit volume, will be given by:
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, i.e. the magnetic fields so strong (or temperature so low), we have the magnetic saturation: 
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For η << 1, i.e. the magnetic fields so weak (or temperature so high), we have: 
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to the lowest order of approximation. So, the high temperature susceptibility of the system is, therefore, given by:
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The last equation is the Curie’s law of paramagnetism and the parameter C being the Curie’s constant
Appendix (1)

General Calculation of Magnetization
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The problem of paramagnetism could be treated classically (Langevin's theory) or quantum-mechanically. Here, we are following the quantum mechanical treatment. Consider a system consisting of N non-interacting dipoles at absolute temperature T  and placed in an external magnetic field H  pointing along  z-direction (Note that: H  is the local magnetic field acting on the atom, i.e. it includes both external and field produced by all other atoms). Then the (magnetic) potential energy of a dipole can be written as:
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Here 
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 are the charge and the rest mass of the electron, respectively) and is the Lande` g-factor, i.e.
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being, respectively, the spin and orbital quantum numbers of the dipole and J  is the total angular momentum of the atom. In quantum mechanics, the values of 
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Thus there are 
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possible values of m corresponding to that many possible projections of the angular momentum vector along the z- axis. The probability 
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The mean 
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 component of the magnetic moment of an atom is therefore:
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which could be simplified as:
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To calculate 
[image: image114.wmf]sp

Z

, let us introduce the ratio 
[image: image115.wmf]B

H

H

kT

m

hbm

==

, thus


[image: image116.wmf](1)

sp

1

2

2

sinh()

1

sinh()

JJ

J

m

J

mJ

J

ee

Ze

e

hh

h

h

h

h

--+

-

=-

+

-

===

-

å


Then


[image: image117.wmf]sp

ln

1

()

z

gJ

Z

JB

H

h

mmh

bh

¶

¶

==

¶¶


Where 
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If there are n atoms per unit volume, the mean magnetic moment per unit volume (or magnetization) becomes
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and 
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 is the ''magnetic susceptibility''. The result 
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Appendix (2)

Statistics of various ensembles
1- The microcanonical ensemble:- Systems with fixed 
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Thus all the states in the microcanonical ensemble appear with the same weight which implies that 
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with the discrete eigenvalues 
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2- The microcanonical ensemble:- Systems with fixed 
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Thus density operator in the canonical ensemble could be written as: 
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The expectation value 
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the suffix 
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 here emphasizes he fact that the averaging has been done over an ensemble with 
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_umed to be negligible. In the presence of a magnetic induction B, these
dipoles tend to orient themselves in the direction of the field in order to
minimize their energy. The thermal energy at ordinary temperatures, how-
ever, resists such an alignment of dipoles. In thermal equilibrium, the dipoles
orient themselves at an angle 6 with the direction of the applied field as shown
in Fig. 8.1. The potential energy of each dipole in this position is given by

E=-pB=-pBcos6
Using Maxwell-Boltzmann distribution law, the number of magnetic dipoles
having this particular orientation is proportinal to

E + pBcos 6
exp | Tp ) o exp T

Also, according to statistical mechanics, the probability for a magnetic dipole
to make an angle between 6 and 0 + d6 with the magnetic field, or the number
of dipoles, dn, having axes within the solid angle do lying between two
hnllow cones of semiangles  and 6 + d6 (Fig. 8.1) is given by

! puBcos 6
dn o« exp |~ T o}
pBcos 6
=kexp |~ 7 2n sin@ d@ (8.29)

where k is a constant. Each one of these dipoles contributes a component of
magnetic moment p cos 6 to the magnetization, whereas the components
perpendicular to the field direction cancel each other. Hence the average
component of the magnetic moment of each atom along the field direction
multiplied by the number of atoms per unit volume, N, gives the magneti-
zation M, i.e.,

[T cosBdn rficosd sinchpLy’fose Jde
M = Nu<cos@> = N — = e
fodn [7sin@ exp(‘“ :T"s Jde
(8.30)
Let o sE
and cosB =y

—sin 8 d6 = dy

Magnetism in Solids

Therefore, Eq. (8.30) becomes

-1
Mo
fle™dy

x

edy N [i+e"

e*-¢”

= Np L(x) (8.31)

L(x)

Fig. 8.2. Variation of L(x) with x.
where L(x) is called the Langevin function. The variation of L(x) with
B
x= :7 is shown in Fig. 8.2. For x << 1, i.e., at normal field strengths and

ordinary temperatures, the curve is almost linear and coincides with the *
tangent to the curve at the origin which is equal to x/3. Thus, we have

x uB
L -0 == = — i
(N0 =3 = 37 ®@32)
Therefore, Eq. (8.31) gives
_ M’B
7 BRD
The paramagnetic susceptibility is given as
= BoM _ o)
Yara= " T Tmir )

which shows that the susceptibility is inversely proportional to temperature.
It can be written as
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