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Fluctuation  
 

Let r  be the energy of the microstate labeled by i , and let us suppose that the system is in 

thermal equilibrium with a heat-bath at temperature T. Then: 
 

The probability rp of the system being found in the microstate r is proportional to re  
 

i.e. r
rp e    . 

 

It is usually written 1/ Bk T   where Bk  is Boltzmann’s constant, = 1.38 x 10-23 J K-1. The quantity 

re  
 is known as the Boltzmann factor. This fundamental result of statistical mechanics will be the 

starting point of our analysis. From it will follow all the time-independent properties of a system in 
thermal equilibrium. 
Since the system must always be in some state, the total of the rp  should be one, and the normalized 

probability rp  is therefore 

r

r

e
p

Z

 

                                                 (1) 

where the normalizing factor Z is 
r

i

Z e                                               (2) 

Equation (1) is the Gibbs probability distribution. From it we can calculate the thermal average X of 

any property X  of the system, provided that: 
 

1. We know the microstates a of the system; 
2. We know the energy r  of each microstate; 

3. We know the value rX  taken by X  in each microstate r; 

4. We can perform the sum 
1

r
r r r

r r

X p X X e
Z

            (3) 

The fourth of these in particular can be very hard if not impossible to do exactly, but this is a 
problem of technique and not of principle. The Gibbs distribution provides a remarkably simple and 
universal connection between the microscopic laws governing a system and its behavior when in thermal 
equilibrium. 
 

The quantity Z defined in (2) is called the partition function; and is a function of temperature. 
Less obviously, it is also a function of the parameters which determine the energy r  of each microstate. 

We shall refer to these parameters as constraints. For example, if our system consists of molecules of 
gas inside a rigid container, this can be represented by a potential U(x) which is zero inside the container 
but infinite outside it. In this case the ‘constraint’ U(x) does literally constrain the system. Or if a system 

of spins is is put in an external magnetic field B there will be an addition to the energy ii
s B  , 

reflecting this. In this case the external field B is the constraint. We shall denote the set of constraints 
applied to a general system by {V}. It is by varying the constraints that mechanical work is done on the 
system. Far from Z  being just a normalizing constant, we shall see that all the properties of the system 
can be obtained from the functional dependence of Z  on the temperature and the constraints. 
 

There remains the question of what the averages we calculate with the Gibbs distribution mean. There are 
two possibilities:  

1- We can imagine a very large number of copies of a system, and ask what the distribution of the 
microstates of these copies is at one particular time. Or  
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2- we can imagine carrying out a series of measurements on one particular system at different times, 
and asking how these measurements are distributed.  
 
Usually it is correct to assume these two distributions to be equal to each other and to the Gibbs 

distribution, but problems can arise if it takes a long time for the system to travel between different 
parts of the space of microstates available to it. It may be that the microstates of a single system 
follow the Gibbs distribution over a sufficiently long time, but over the time of observation they do 
not.  

Fluctuations 
 

Statistical mechanics can also be used to study quantities about which classical thermodynamics has 
nothing to say. For example, consider the fluctuations that occur in the energy of a system at given values 
of temperature and constraints. The energy will not always have its equilibrium value, and it would be 

interesting to know over what sort of range the energy fluctuates. The thermal average of 2( )E E  

tells us this. Consider a small system with fixed volume and number of particles in thermal contact with a 
heat path at temperature T. 

The mean energy of a system in thermal equilibrium is, 
1

,                 r r
r r r

r r i

U E p e Z e
Z

            

This is the sum of the energy of each microstate over all microstates r, weighted by the 
probability that the system will be in that microstate. From the definition (2) of the partition 
function Z  it follows that 

 

 
 

log1 1
r

r
r V V

ZZ
U e

Z Z


 
   

          
                                         (A) 

and 

 
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2
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  

  
       

               
               (B) 

then. 
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                                                                     (C) 

Using (A), one gets: 
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 
   

           (D) 

Equating (C) and (D), we have:  

 22
V BC k U   

U is the RMS fluctuation in the energy of the system 

B VU T k C                                                              (E) 
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We used the identities: * 2 21
1/ ,

T
kT kT

kT T T T


 

    
      

    
 

Equation (E) is a completely general result, and does not depend on any particular 
properties of the system being considered. For 1 kg of water at room temperature U  is about 
4.2 x 10-8 J, which is small—the amount of energy needed to change the water’s temperature 
by 1 K is 1011 times this. Note that since the heat capacity VC  grows linearly with the size of 

the system, the fractional energy fluctuations 
1U

U V


 fall as the square root of the system 

size. They therefore become negligible in the limit that the size goes to infinity. Because of 
this, this limit is called the thermodynamic limit. The exception to this is when the heat 
capacity of the system diverges, as it does at a critical point. Then the fluctuations do not go 
away as the system becomes larger, but are present on all scales. 

It was surprisingly easy to find something as interesting as the fluctuations in the energy. 
The technique of differentiating the partition function to find thermal averages is a very 
powerful one. If the partition function is known as a function of the appropriate constraints, the 
thermal average of any quantity can be found. If the required constraint term is not already 
present in the Hamiltonian, it can be added in. 
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Correlation Function (CF) 
 

A correlation function is a statistical correlation between random variables at two different 
points in space or time, usually as a function of the spatial or temporal distance between the 
points. If one considers the correlation function between random variables representing the same 
quantity measured at two different points then this is often referred to as an autocorrelation 
function being made up of autocorrelations. Correlation functions of different random variables 
are sometimes called cross correlation functions to emphasise that different variables are being 
considered and because they are made up of cross correlations. 
Correlation functions are a useful indicator of dependencies as a function of distance in time or 
space, and they can be used to assess the distance required between sample points for the values 
to be effectively uncorrelated. In addition, they can form the basis of rules for interpolating 
values at points for which there are no observations. 
Correlation functions used in astronomy, financial analysis, and statistical mechanics differ only 
in the particular stochastic processes they are applied to. In quantum field theory there are 
correlation functions over quantum distributions. 
 
In statistical mechanics, the correlation function is a measure of the order in a system, as 
characterized by a mathematical correlation function. Correlation functions describe how 
microscopic variables, such as spin and density, at different positions are related. More 
specifically, the correlation function quantifies how microscopic variables co-vary with one 
another on average across space and time. A classic example of such spatial correlations is in 
ferro- and antiferromagnetic materials, where the spins prefer to align parallel and antiparallel 
with their nearest neighbors, respectively. The spatial correlation between spins in such 
materials is shown in the figure to the right. 
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Like this: 
 

 
 
Correlation can have a value:  

1 is a perfect positive correlation 
0 is no correlation (the values don't seem linked at all) 
-1 is a perfect negative correlation 

 
Time correlation function 
Time-correlation functions are an effective and intuitive way of representing the dynamics of a 
system, and are one of the most common tools of time-dependent quantum mechanics. They 
provide a statistical description of the time-evolution of a variable for an ensemble at thermal 
equilibrium. They are generally applicable to any time-dependent process for an ensemble, but 
are commonly used to describe random (or stochastic) and irreversible processes in condensed 
phases. We will use them in a description of spectroscopy and relaxation phenomena. 

If we consider a series of measurements with the value of the measurement ( )A t  
changing  randomly but continuously. Then at times t and 't  that are close together the values 

( )A t and ( ')A t are correlated if they have similar values. Whereas for the measurements at 

times t and 't  that are far apart we could consider no relationship between the values ( )A t and 

( ')A t , so they are uncorrelated. The correlation plotted against time would then start at some 
value and decay with time. 

 
 
If we shift the data by a time   and multiply the values of the new plot to the original one we get a big 
value if the curves have both high and low values at the same place. 
The operation of multiplying two curves together and integrate them over the x-axis is called an overlap 
integra . The overlap integral is also called the Correlation function 

 
The correlation is not a function of time, it is a function of the shift in time or the correlation time  . 
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The correlation function of the one-dimensional Ising model 
We proceed to calculate the correlation function of two spins iS  and jS  it is defined as 

the average value (2) ( , ) i jG i j S S of the product *
i jS S . The correlation function is a measure 

of the influence exerted by a given spin, say iS , whose direction is fixed; it is easy to show that 

the conditional probability for having jS = + 1, given that iS  = +1, is  1

2
1 i jS S ). Since the 

interaction favors the alignment of spins, a nearby spin jS  will tend to assume the same 

orientation as iS  however, thermal agitation counteracts this tendency and exerts a de-

correlating effect. Qualitatively speaking one expects some correlation that weakens as the 
distance between iS  and jS  increases; at a fixed distance apart the correlation will be stronger 

when the temperature is lower.  
Exampe 1: For the Hamiltonian of the one-dimensional Ising model in the form: 

1

1
1

0
N

o i i
i

H H J S S J





     

the value of i jS S  is calculated as a standard statistical average: 

               (A) 

with K J and the factors iS  and jS  outside the product. The end-result for i jS S reads 

                                      (B) 

Note that: More frequently we will use the relation: lnA A XX e  
H.W. Prove equation (B). 
The correlation function decreases exponentially with the distance 
i j (see Figure).  With “a” the lattice spacing, the distance between 

spins iS  and jS  in cm is ija i j r  the correlation length   is 

defined by 

      /ijr
i jS S e   ,                                                          (C) 

and for the one-dimensional Ising model equation (B) yields 

 
0

0ln tanh /

Ta

TJ kT


 
       

                                                          (D) 

This expression shows that the correlation length decreases with rising temperature; it tends to 
zero asT  , and to infinity as 0T  , thus confirming the intuitive argument given earlier. 
Note also that equation (B) confirms the absence of spontaneous magnetization: 

2
lim 0i j i j

i j
S S S S S

 
            (Uncorrelated) 

 
Thermodynamic variables like the magnetization or the entropy are macroscopic 

properties. But, it became apparent that a much fuller understanding of phase transitions could 
be obtained by considering what was happening on a microscopic level. To be able to do this 
in a more quantitative way we introduce the connected correlation functions. For example the 
spin-spin connected  correlation function, defined to measure the correlation between the spins 
on sites i and j, is 
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  (2) ( , ) (r , r )c i j i i j jG i j G S S S S   
 

                       (1) 

where ri


 is the position vector of site i and   denotes a thermal average. If the system is 

translationally invariant i jS S S  and G  depends only on (r r )i j
 

 

            
2(2) ( , ) (r , r )c i j i jG i j G S S S  

 
                           (2) 

Away from the critical point, as r  , the spins become uncorrelated; and hence the 
correlation function decays to zero. Note that this is true not only above but also below the 
critical temperature, although here the mean value of the spin 0S  , because, as is evident 

from eqn (1), the correlations are measured between the fluctuations of the spins away from 
their mean values. The correlations decay to zero exponentially with the distance between the 
spins 

                                  
/(r) rG r e                                      (3) 

where   is some number.  
Equation (3) provides a definition of the correlation length, , which was used as an 

estimate of the size of the largest ordered clusters in the Monte Carlo generated snapshots of 
an Ising model. We have assumed that   is independent of the direction of r


. This is usually 

the case for large r  near criticality. 
 

 

 
At the critical point itself long-range order develops in the system. The correlation length 

becomes infinite and eqn (3) breaks down. Evidence from experiments and exactly soluble 
models shows that here the correlation function decays as a power law 

                                  
 2(r) dG r                                                    (4) 

where  , is the a critical exponent and d is the dimension of the space.. 
It is possible to relate the spin-spin correlation function to the fluctuations in the 

magnetization and hence to the susceptibility.  
 

Definition and generating function 

The correlation function for two spins, (2) ( , ) i jG i j S S , has been introduced already. 

Since this construct will play a crucial role through all that follows, we proceed to list several 
definitions and useful properties. The present section uses an elementary example to introduce 
some techniques that will be developed more systematically in our course. 

We defined the correlation function (2) ( , ) i jG i j S S  of two spins as the expectation value. 

This definition is satisfactory when 0iS  , or in other words when cT T  and 0B  . When 

0iS  , the assertion that two spins are uncorrelated means that 2
i j i jS S S S M  . 
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Thus it is logical to formulate the definition of (2) ( , )G i j  in the general case as (connected 

correlation function): 
(2) ( , )ij c i j i jG G i j S S S S    

It proves useful to relate ijG to a second derivative of the partition function  iZ B in a 

site-dependent, non-uniform field iB :  

 
 

o K K
K

K

H B S

i
S

Z B e

 

   
 


                                                       (1.4.2) 

Where 1/ Bk T  and 
1

1
1

0
N

o i i
i

H H J S S J





    . The expectation value iS  is given by: 

 

1 o K K
K

K

H B S

i i
S

S S e
Z


 

   
 


   

 
Define i iK B , whence 

 ln1
i

i i

ZZ
S

Z K K


 

 
                                                         (1.4.3) 

Continue by differentiating once more, with respect to iK  

 

1 o K K
K

K

H B S

i j i j
S

S S S S e
Z


 

   
 


   

whence 
21

i j
i j

Z
S S

Z K K




 
 

This entails 

 22
(2) ln1 1 1

( , )c i j i j
i j i j i j

ZZ Z Z
G i j S S S S

Z K K Z K Z K K K

     
              

 

whence 

 2
(2) ln

( , )c
i j

Z
G i j

K K



 

                                               (1.4.4) 

The mean value iS and the correlation (2) ( , )G i j  are found by differentiating the 

partition function; the process could be extended to correlation functions for several spins. 
Because of this, [ ]iZ B  is called the generating function (or generator) of the correlation 

functions. Note further that differentiation of [ ]iZ B yields i jS S , while differentiation of 

ln [ ]iZ B  yields directly; the latter is called the connected correlation function, More generally 

the logarithm ln [ ]iZ B of [ ]iZ B  is the generator of the connected correlation functions. 

Moreover, even if there is no physical applied B-field it can prove useful to introduce a 
fictitious one in order to calculate the correlation functions from (1.4.4); we merely set 

0B  in the end-result: 

 2
(2)

0
0

ln
( , )c K

i j K

Z
G i j

K K




 
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One very important property of the correlation function is that (up to a factor  ) it represents 

the response of the spin iS to a variation of the B-field at the site j . In order to show this, we 

need merely evaluate i

j

S

B




from (1.4.3): 

 
2

(2)ln
( , )i

c
j i j

S Z
G i j

K K K


 
 

  
                           (1.4.5) 

Notice that it is indeed the connected correlation function that is featured in (1.4.5). This 
leads us to make an important observation on the state at cT T . On physical grounds, we 

expect that the response of a spin iS  to the variation of the B-field at site j should vanish at 

large values of r ri j
 

; this will indeed be the case if the connected correlation function 

ijG tends to zero when r ri j 
 

. One then says that the corresponding state obeys the 

clustering property. We have obtained the state at cT T  in the thermodynamic limit, in the 

presence of an infinitesimal, spatially homogeneous, magnetic field the magnetization takes 
then one of two possible values 0M or 0M  (for simplicity we restrict our discussion to an 

order parameter with dimension 1n  ). Such states are called pure states.  
With other external conditions, we could obtain a state whose magnetization would not 

be equal to 0M or 0M for example, in zero external fields the magnetization would be zero, 

from symmetry arguments. Such states are called mixed states. There is a rigorous theorem 
which states that pure states are in one-to-one correspondence with clustering states; thus, in a 
pure state, the connected correlation function vanishes at large distances, while this is not the 
case for mixed states. One can also obtain a pure state by taking a very large lattice and 
assigning a well-defined orientation to the spins on the boundary. If for example all spins on 
the boundary are directed upward, one can show that the magnetization 0M  is obtained in the 

limit of an infinite lattice. 
 



Prof. Dr. I. Nasser                                         Phys 630, T-151                                                          5-Sep-15 
Fluctuation_correlation 

 10

Simple calculation: calculate n n rS S  . Note that     
1

1

1

2 cosh 2 cosh
N

NN N
N i

i

Z K K






    

 
 
 


