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EXACT ONE-DIMENSIONAL ISING MODEL 
The one-dimensional Ising model consists of a chain of N spins, each spin interacting only with 
its two nearest neighbors. The simple Ising problem in one dimension can be solved directly in 
several ways. 
 
First the chain is considered as open ended and the Hamiltonian in the form: 
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where K J . The exponential can be factored as a product of terms of the form 1K i ie     , 

each of which can be written as (Note that:  1i i    can only be +1 or -1, cosh( )x x  and 

sinh( )x x   ) 
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where tanh( )y K . 
Here we have used: 
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which holds because can only +1 or -1. 
 
The partition function (7.5.1) then becomes 

 

 
and the indicated summation yields 2(. . .). Next, summation over 2 1    gives another 

factor 2 and a product of 3N   terms. Continued summations finally produce the result 
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                              (7.5.4) 

Average  energy and the specific heat: 
In the thermodynamic limit, the free energy per spin is given by: 
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and the heat capacity C is 

 2 2coshB
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The energy and heat capacity are smoothly varying, always finite functions of temperature, 
exhibiting no phase transition. Thus the molecular-mean-field- approximation is incorrect, no 
matter how plausible, for a one-dimensional system, and its validity in n-dimensions then is 
immediately to be doubted. 
 

Another direct technique for the open, one-dimensional chain makes use of a change in 
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, where it may be seem from Eq. (7.5.1) 

or (7.5.3) that NZ  is independent of i . For the open chain, the 's are independent, and NZ  

can be written as 
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where each sum on a i  yields a factor  2cosh K , and the final result is the product of 1N   

such independent factors, in agreement with Eq. (7.5.4). For closed chains in one dimension 
and for Ising lattices of higher dimension, no such simple technique will work because the 's  
are no longer independent. 
 
Second When the chain is closed, with 1 1NS S  ,:  
For the open ended chain, the Hamiltonian has the form: 
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When the chain is closed, with 1 1NS S  , direct evaluation of NZ becomes slightly more 

difficult, but other procedures are often simpler for the closed chain than for the open one. For 
the closed chain, NZ  becomes: 
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    
 

1
1

cosh 1
N

N

N i i
S i

Z K yS S 


   

where K J  and tanh( )y K .We work out the product and sort terms in powers of y : 
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The terms, linear in y  contain products of two different (neighboring) spins, like 1i iS S  . The 

sum over all spin configurations of this product vanish,  
1

1
 or 

0
i i

i i
S S

S S


  , because there are 

two configurations with parallel spins ( 1 1i iS S   ) and two with antiparallel spins 

( 1 1i iS S    ). Thus, the term linear in y vanishes after summation over all spin configurations. 

For the same reason also the sum over all spin configurations, which appear at the term 

proportional to 2y , vanish. In order for a term to be different from zero, all the spins in the 

product must appear twice (then, 2 2
i

iS
S  ). This condition is fulfilled only in the last term, 

which after summation over all spin configurations gives 2N Ny . Therefore the partition 

function of the Ising model of a linear chain of N spins is: 
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a result that differs from that of    1
2 cosh

N
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

  for open chain. In the limit of very 

large N, however, the Ny  contribution becomes vanishingly small, since tanh 1y K   for all 

finite J and  . 
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Ising Model and Transfer Matrix 
Exact solutions of the Ising model are possible in 1 and 2 dimensions and can be used to 

calculate the exact critical exponents for the two corresponding universality classes.  
In one dimension, the Ising Hamiltonian becomes:  
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, , 0
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which corresponds to N spins on a line. We will impose periodic boundary conditions on the 

spins so that 0Ns s , 1is     or 1 . Thus, the topology of the spin space is that of a circle, 

see the figure. 

 
With the definitionsK J and H h , the partition function is then:  
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In order to carry out the spin sum, let us define a matrix P with matrix elements:  
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The matrix P is called the transfer matrix. Thus, the matrix P is a 2 x2 matrix given by 
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From the matrix rules, the larger   and smaller   eigenvalues are calculated as: 

2 2
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Solving for  , one finds: 

2 4cosh( ) sinh ( )K Ke H H e 


   
   
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Free energy: 
In the thermodynamic limit, the free energy per spin is given by: 

1
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N
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which is the energy per spin as expected. 
 
The magnetization: becomes  
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Which is regular as 0H  , since cosh( ) 1H   and sinh( ) 0H  , itself vanishes. Thus, there 
is no magnetization at any finite temperature in one dimension, hence no nontrivial critical 
point.  
 
Example: It was that the exact eigenvalues of the periodic Ising model is given by: 

2 4cosh( ) sinh ( )K Ke H H e 


   
  ,    1/ kT  , K J and H h  

For 0H  ,simplify the expression: 
2 4 4cosh( ) sinh ( ) 1K K K K K Ke H H e e e e e   


         
    ,    1/ kT  ,  

2cosh( ), 2sinh( ),K K      

Consequently 
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     
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Where tanh( )y K  
 
Then find the following: 
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1
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ii-  
E
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
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find T at maximum C.  
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As 0T   

2 /J TJ
F e

T
    

The first term, even though it looks like it blows up at 0T  , is actually regular. It simply says 
that the ground state energy is J  per spin. It could be removed by a constant shift of energy, 
for example. The second term is singular. So the singular part of the free energy behaves as: 

2 /
singular

J TF e    

The correlation length is 
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1 2

lnln
tanh

J Te

K








  
   

     

 

The last approximate equality works at 0T  . Their product, in the limit 0T   is thus 

singular

1

2
F    

Which is a universal number (does not depend on  parameters) 
 
H.W. With the eigenvector of the Ising matrix in 2-dimensions, calculate the magnetization 
per spin, the correlation function , and the correlation length, and check if they behave in a 
sensible way.(Go to the discussion in sections 3.3 and 3.4 of Goldenfeld) 
 
H.W. Write down the transfer matrix for the one-dimensional spin-1 Ising model in zero field 
which is described by the Hamiltonian 

1
0

, 0, 1,0
N

i i i
i

H J s s J s


      

Hence calculate the free energy per spin of this model and show that it has the expected 
behavior in the limits 0T  and T   . 

[Answer:  .] 
 
While the one-dimensional Ising model is a relatively simple problem to solve, the two-
dimensional Ising model is highly nontrivial. It was only the pure mathematical genius of Lars 
Onsager that was able to find an analytical solution to the two-dimensional Ising model. This, 
then, gives an exact set of critical exponents for the 2d   and 1n  universality class. To date, 
the three-dimensional Ising model remains unsolved. 

 
Here, the Onsager results will be stated as: 
In the thermodynamic limit, the final result at zero field is:  

 
where  

 
The energy per spin is  

 
where  

 
The magnetization, then, becomes  
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for cT T and 0 for cT T , indicating the presence of an order-disorder phase transition at zero 

field. The condition for determining the critical temperature at which this phase transition 
occurs turns out to be  

 
Near cT T , the heat capacity per spin is given by  

 
Thus, the heat capacity can be seen to diverge logarithmically as cT T .  

The critical exponents computed from the Onsager solution are  

 
which are a set of exact exponents for the 2d   and 1n   universality class.  

 

 


