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& See W. D. McComb, “renormalization method, A GUIDE FOR BEGINNERS”,
(Oxford, 2004).
7.4 Linear response theory (Page 160)
This is a method for working out the response function (e.g. the magnetic susceptibility) of a
system in thermal equilibrium. It relies on a clever mathematical trick but also has an underlying
physical interpretation. For once we shall begin with the mathematical idea and come back to the
physics later. In statistical mechanics, we saw that we can work out the mean value of the

energy, for instance, <E> either directly from the usual expectation value (as in egn

U:<E>:Zpr r:%ZEre_ﬂEra Z:ize_ﬂEr

or indirectly by differentiating the partition function with respect to the temperature T , as in egn

U:£2Ere‘ﬂEr:_£(%j =_(8(|OQZ)J _
73 Z\ 0B )y, B )y

In fact, this idea is available as a general technique for any variable X (say) and the general
algorithm may be stated as follows:

* Add a fictitious term —X Y to the energy (or Hamiltonian) of the system.

» Work out the partition function Z as a function of Y .

* Differentiate In Z with respect to Y and then put Y = 0.

That is,
i aInz| — 1 i e*ﬂ(Er*XiY) ziz Xie*ﬂ(Er*xiY) :<X> (7_42)
B oY |, BZ oY~4 o 24
So the two methods are equivalent. If we use
L InZ=F
B
fromegn ( Z =e #F), then the mean value of the variable X follows at once as:
(X)=- oF (7.43)
Y Iy
Then, differentiating again with respect to Y gives the fluctuations in X:
o(X
(X2)=(x) == o) _x (7.44)
p oy B

where y is the generalized susceptibility. This is known as the linear response equation.

What is the physical interpretation? Answer: If we apply a field (external) in order to
generate the new term in the Hamiltonian, then this applied field breaks the symmetry of the
system. In this way, the response of the system to a symmetry-breaking perturbation is revealed.

7.4.1 Example: spins on a lattice
As a specific example, we shall again consider the Ising microscopic model of a ferromagnet,
which consists of a lattice of N spins, with a spin vector Si at each lattice site i. Note that:

N-1 KESiSM
H=-s358. >0, Zy ={S§1}e 5K =pfe

7.4.1.1 The mean magnetization. We begin with the mean magnetization, which we
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denote by
M = (5)

where
N
§= Z S§; = total spin.
i=1

In line with the procedure of the previous section, we add a term

aa=(-%) /s

to the Hamiltonian or energy. (Actually J = 8B, where B is the magnetic field). Then

dlnZ
M=

745
57 (7.45)

J=0

74.1.2  Correlation functions. Allow J (or B) to be different at each lattice site: add the term

’ Ji 5
AH ==Y —,
— P
to the Hamiltonian, Hence we may obtain the mean and correlations as follows:
132
8&)=— . 7.46
(i) Zal; { .
1 #’Z
685 = o 1 7.47)
(55 ZaJal; :
1 2
58:8)=——"—""—, 748
(588 = Z 35 ar00 s

where (§;§; .. .) are the correlations.

7.4.1.3 Connected correlations. We can also treat connected correlations, which (as defined
by egn (7.9)) involve fluctuations about the mean value. in this way and these are generated
by diferentiating In Z, thus:

3 InZ
i i — -4
Geli, j) iiJ,-iiJ_,: (7.49)
The above is the pair correlation: a generalization to the n-point connected correlation is
possible:
i i}
Gelip, oo iy)= —, -+, I = (5;...5%.)c. 7.50
e(iy in) 5 37 nZ = (5 wle (7.50)



Prof. Dr. I. Nasser Phys 630, T-151 9-Sep-15
Linear_response

Simple calculation: calculate (S S, . ). Note that Zy ~ 2" {cosh(K } = 2“Hcosh

n=n+r

1 2 3 4 5 4 7 & 9o w T
N —¢—0—8—0—8—0—8—0—8—0—8—
Define
G(r)<nn+r>

where r is the distance between sites, measured in units of lattice constant a. Using:

N-1
N-= ZKiSiSHl
H__ZJI iYi+l J>0 ) ZN :Ze|:1 ’Ki:ﬂ‘]i
- (S
3 1K I+
G (I") < n n+r> _i SnSn+rel N 1 :iz Snsn+reK15152+ KnSnSpar -

N {S}
Re-write

ZNGn (r) = Zi{z}: SnSn+reKlslsz+"'KnSnSn+r+-~-
N {S

Consider nearest neighbor case: r =1
Z,G. (1) = ZS g oKiSiSortKSuSptr _ 0 ZeKlSlSZ+"'K"S”S”+l+"' _ 0 5
n _

n~n+l aKn {S} aKn N

and inductively,

ZNGn(r): g 0 ‘ ZN

oK oK . oK. .
Hence:
2 Hcosh K;)G, (1) =2 Hcosh )sinh(K,)

=S Hcosh ;)eosh(K, )G, (1) = Hcosh ;)sinh(K,)

Therefore

G, =tanh(K,), = G,(r= lL[ tanh (K, ;)

Uniform interaction gives G, (r) = tanh" (K))

Consider limit » = o00. 7" > 0, tanh K < 1 and G, = 0 as r — oo. Hence for 7' = 0, K — o
and GG, — 1.

1 , - o
(S:8;> = E(c:osh K)¥-1'2¥tanh K)!"~9! = (tanh K}~ 11,
<SiSj> — e—|i-il|\ntanh K| __ e—li-—jl[lulanh(}/kT)l_

Note that: More frequently we will use the relation: X * =e*""*

3



