
ID:

Key

Phys 101 (Term 041)-(F. Enaya)

Show your steps clearly for full credit.!!

(Q1) The Figure shows a plot of the force versus time (in millisecond)during the collision of a ball with a wall. Find the magnitude of the impulse delivered to the ball by the wall.

J = area under the curve

$$J = \frac{1}{2}$$
 (Base) x (Height) = $\frac{1}{2}$ (4 x 10⁻³) x (10000)

$$J = 20 \text{ Kg.m/s}$$

(Q 2) Body A with mass \mathbf{m} moves along an x axis with kinetic energy of 9.0 J before having an elastic collision with body \mathbf{B} with the same mass \mathbf{m} , which is initially at rest. What is the final kinetic energy of \mathbf{B} ?

$$V_i = \sqrt{\frac{18}{m_A}}$$
 $V_i^2 = 9 \implies V_i = \sqrt{\frac{18}{m_A}}$

(This is a special case of the one dimensional elastic collision) So...

$$V_2(f) = \frac{2m_1}{(m_1 + m_2)} V_1(i)$$

Since $m_A = m_B$

$$V_2(f) = V_1(i) = \sqrt{\frac{18}{m_B}}$$

$$\therefore \mathbf{K}_{\mathbf{B}}(\mathbf{f}) = \frac{1}{2} \mathbf{m}_{\mathbf{B}} \left(\sqrt{\frac{18}{m_{\mathbf{B}}}} \right)^{2} = 9 \mathbf{J}$$