- 21. It should be mentioned that an efficient way to work this vector addition problem is with the cosine law for general triangles (and since \vec{a} , \vec{b} and \vec{r} form an isosceles triangle, the angles are easy to figure). However, in the interest of reinforcing the usual systematic approach to vector addition, we note that the angle \vec{b} makes with the +x axis is 135° and apply Eq. 3-5 and Eq. 3-6 where appropriate.
 - (a) The x component of \vec{r} is $10 \cos 30^\circ + 10 \cos 135^\circ = 1.59$ m.
 - (b) The y component of \vec{r} is $10 \sin 30^\circ + 10 \sin 135^\circ = 12.1$ m.
 - (c) The magnitude of \vec{r} is $\sqrt{1.59^2 + 12.1^2} = 12.2$ m.
 - (d) The angle between \vec{r} and the +x direction is $\tan^{-1}(12.1/1.59) = 82.5^{\circ}$.