Help Session 4- (Fuad Enaya) 1/12/2004

CH # 11

1- A disk of radius 20 cm rotating at 42 rad/sec stops (assume constant deceleration) after 10 sec. Through how many radians does the disk turn during this time? *Correct Answer 210 rad*

2- A disk is rotating about an axel through its center O when two forces F1 = 10 N and F2 = 15N are applied on it as shown in Fig. The moment of inertia of the disk about O is 0.036 kg.m². If the system starts from rest, find the angular speed at time = 3.0 s. *Correct Answer 100 rad/s*

3- The four particles in Fig (6) are connected by rigid rods of negligible mass. Calculate the moment of inertia of this system about the x axis.

Correct Answer 63 kg.m²

4- A wheel has a moment of inertia 12 kg.m^2 about its axis of rotation. As it turns through 5.0 rev, its angular velocity increases from 5.0 rad/s to 6.0 rad/s. If the net torque about the axis of rotation is constant, its value is: *Correct Answer 2.1 N.m*

5- A disk has a moment of inertia 6.0 kg.m^2 about a fixed axis of rotation. It has a constant angular acceleration of 2.0 rad/s². If it starts from rest, the work done during the first 5.0 s by the net torque on it is:

Correct Answer 300 J

6- A wheel with a moment of inertia of 5.0 kg.m^2 and a radius of 0.25 m rotates about a fixed axis perpendicular to the wheel and through its center as shown in figure 10. A force of 2.0 N is applied tangentially to the rim. As the wheel rotates through one revolution, what is the work done by the force ?

Correct Answer 3.14 J

With My Best Wishes