Help Session 2= (Fuad Fncuc) 27/10/2004.

Ch 7\&8

11- A block of mass 2.0 kg is released from rest and slides down a rough track of radius $\mathrm{R}=1.0 \mathrm{~m}$, as shown in the Fig. If the speed of the block at the bottom is $4.0 \mathrm{~m} / \mathrm{s}$, What is the energy dissipated by the frictional force acting on the block? [Correct Answer 3.6 J]

13- A 3-kg block starts at rest and slides a distance d down a smooth $30-\mathrm{deg}$ Incline, where it contacts a spring of negligible mass, as shown in the Fig. It slides an additional 0.2 m as it is brought momentarily to rest by compressing the spring. The force constant of the spring is $400 \mathrm{~N} / \mathrm{m}$. Find the initial separation d between the mass and the spring.
[Correct Answer 0.344 m]

14- A spring of force constant $100 \mathrm{~N} / \mathrm{m}$ rests on an inclined plane that has the same length as the spring. The inclined plane makes an angle of 45 deg with the horizontal. A block of mass 0.1 kg is pressed against the spring, compressing it a distance of 0.2 m , and then released. Find the maximum height the block reaches above the point at which it leaves the spring. [Ymax $\left.=\mathrm{V}_{0}{ }^{2} \sin ^{2} \theta_{0} /(2 \mathrm{~g})\right]$
[Correct Answer 0.95 m]

Good Luck

