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Abstract

We evaluate the density of states (DOS) associated with tridiagonal symmetric Hamiltonian matrices and study the effect of perturbation on one
of its entries. Analysis is carried out by studying the resulting three-term recursion relation and the corresponding orthogonal polynomials of the
first and second kind. We found closed form expressions for the new DOS in terms of the original one when perturbation affects a single diagonal
or off-diagonal site or a combination of both. The projected DOS is also calculated numerically and its relation to the average DOS is explored
both analytically and numerically.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The density of states (DOS) in condensed matter and statistical physics is a property that describes or quantifies how closely
packed energy levels are in a given physical system. It is often expressed as a function of the energy E or the wave vector |�k| and
denoted by ρ(E). The energy E is related to |�k| through a dispersion relation, which depends on the details of the system at hand.
The quantity ρ(E)dE represents the number of allowed energy levels, within the energy range E to E + dE. Mathematically the
discrete DOS projected on state |j〉 is defined by

(1)ρj (E) =
∑
m

∣∣〈m|j〉∣∣2
δ(E − Em),

where the sum runs over all discrete spectrum of the Hamiltonian with eigenvalue Em and corresponding eigenstates |m〉. The
projected DOS describes how a particular orbital |j〉 couples to the entire system. Physically, the local DOS on a given orbital |j〉
describes the intensity of each eigenstate of the system on this particular orbital. This quantity is of physical interest and can be
measured by means of tunneling probes [1]. This projected DOS is related to the imaginary part of the Green function by

(2)ρj (E) = − 1

π
lim
ε→0

[
Im〈j | 1

E + iε − H
|j〉

]
= 1

π
lim
ε→0

[
ImGjj (E + iε)

]
,

where G is the Green function of the system. An advantage of the Green function approach is that it provides a direct method
for calculating the DOS as evidenced by (2). In addition the Green function technique, which constitutes the analytic basis of the
present Letter, is mathematically elegant as can be seen from the results obtained in this Letter.
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The method used in this Letter to extract the DOS relies on the fact that we deal with Hamiltonian representations that are
of tridiagonal nature. However, this restriction does not limit the validity of our results since the matrix representations of any
Hamiltonian operators can always be brought to a tridiagonal form in certain basis using the Lanczos method [2]. Actually the
importance of tridiagonal Hamiltonians is due to the fact that by Lanczos method it is possible to map any quantum mechanical
problem into a semi-infinite 1D chain represented by a tridiagonal Hamiltonian. This is the reason why tridiagonal Hamiltonians
have special relevance in quantum mechanics [3]. Thus, starting with a seed unit vector |φ0〉, the Lanczos method [2] generates a
set of orthonormal basis {|φn〉}∞n=0 that tridiagonalizes a given Hamiltonian

(3)〈φn|H |φm〉 = bn−1δn,m+1 + anδn,m + bnδn,m−1.

For irreducible Hermitian representations of the Hamiltonians, all an are real and bn �= 0 for all n. Moreover, bn can be brought into
real form by just including the appropriate phases in the corresponding basis functions. Expanding the wavefunction in this basis
as |ψ(E)〉 = ∑

n pn(E)|φn〉 and inserting this expression in the stationary Schrödinger equation, H |ψ〉 = E|ψ〉, one obtains the
following three term recursion relation for the expansion coefficients {pn(E)}

(4)Epn(E) = bn−1pn−1(E) + anpn(E) + bnpn+1(E), n � 1.

The solution of this recursion, {pn(E)}, are defined modulo an arbitrary function of E. The unnormalized wavefunction is defined
by fixing this arbitrariness with the standard normalization, p0(E) = 1. This choice results in pn(E) being a polynomial of degree
n in E. Consequently, the expansion coefficients {pn(E)} form a set of polynomials orthogonal with respect to the projected density
of states ρ0(E)

(5)

b∫
a

ρ0(E)pn(E)pm(E)dE = δmn,

where the spectrum is assumed to be confined to the energy band E ∈ [a, b]. The norm of the wavefunction then becomes

(6)
∥∥ψ(E)

∥∥2 =
N∑

n=1

∣∣pn(E)
∣∣2

.

This norm can be looked at as being the signature of the nature of the state at energy E. Strongly localized states have normalization
that is independent of the size N of the system while weakly localized and extended states have normalizations which scale with
the size of the system as Nα with α positive. Thus the normalization constant of the wave function ψ(E) can be used as a criterion
for distinguishing between localized and delocalized states [4]. Eq. (2) gives ρ0(E) as follows

(7)ρ0(E) = lim
ε→0+

1

2πi

[
G00(E + iε) − G00(E − iε)

]
.

That is, ρ0(E) is related to the discontinuity across the cut of the element G00(z) = 〈φ0|G(z)|φ0〉 on the segment of the real line
E ∈ [a, b] in the complex energy plane. The Green’s function is formally defined in the complex z-plane as G(z) = (H − zI)−1,
where I is the unit matrix. The task of obtaining G(z) by inverting the infinite matrix (H − zI ) is often difficult. Furthermore, in
realistic cases it is possible to obtain only a finite number of elements {Hnm}N−1

n,m=0. The infinite Hamiltonian matrix is then reduced

to a finite N ×N matrix H̃ which possesses a finite number of eigenvalues and normalized eigenvectors. If Ĩ is N ×N unit matrix,
then G̃(z) = (H̃ − zĨ )−1 is also an N × N matrix. However, G̃00(z) lacks the analytic cut structure necessary to define a density
through relation (7). Instead G̃00(x + i0) possesses a set of interleaved poles and zeros which tries to mimic the cut structure of
G00(z) in the complex energy plane.

In a recent paper by the co-authors [5], three approximation methods were introduced to extract highly accurate density informa-
tion (over a continuous range of energy) from G̃ without a need for knowledge of the asymptotic values of the coefficients an and
bn. The first method, which is called the Analytic Continuation method [6], is based on the fact that G̃(z) is a good approximation
to G(z) in a region of the complex energy plane away from the real axis. Thus the evaluation of G̃(z) at a set of complex energies
{zi} followed by analytic continuation to the real energy axis gives complex values from which the density can be extracted via
relation (7). The second method, which is called the Dispersion Correction method [7], is based on the ability to define the analytic
sense of discretization of the energy continuum and incorporate this information into the calculation. In this way it was possible to
obtain density information over a continuous range of energies. The third method is the Stieltjes Imaging method [8] which is based
on the fact that the density is related to the distribution of the eigenvalues and eigenvectors of the finite Hamiltonian matrix H̃ .

In this Letter, our aim is to study the effect of a particular kind of deformation of the tridiagonal Hamiltonian H . We want to
investigate what happens to the projected density under the following modifications in the entries of H [the recursion coefficients
of relation (4)]

(8)ak → ak + μ, or bk → γ bk,
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for a given non-negative integer k and where μ and γ are real and γ �= 0. These two situations correspond to adding an impurity to
our system, μ represents the strength of the scattering potential while γ represents the scaling of the overlap integral between near
neighbors. Real situations give rise to both effects at the same time since the inclusion of an impurity affects both the scattering
potential and the overlap between near neighbor atoms.

The Letter is organized as follows: In Section 2, we discuss the projected DOS and its numerical computation. In Section 3, we
introduce the one-term perturbation (8) and study its effect on the density of state function. The combined effect of both types of
diagonal and off diagonal deformations is dealt with in a separate Appendix A. In Section 4, we conclude by discussing our main
results and possible extension of this Letter.

2. Projected density of states for finite systems

As stated above, the matrix representation of H in the basis {φn}∞n=0 is tridiagonal. That is, Eq. (3) gives

(9)H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a0 b0
b0 a1 b1 0

b1 a2 b2
b2 a3 b3

× × ×
0 × × ×

× ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where {an, bn} are real and bn �= 0∀n. Therefore, analysis of the system could, equivalently, be carried out in the vector space
spanned by the complete set of L2[a, b] functions {pn(x)}. That is, we study the system in the energy space that carries the spectral
decomposition (Fourier expansion) of the state function, |ψ(E)〉 = ∑

n pn(E)|φn〉. For numerical computations, however, this
space is truncated into a finite N -dimensional subspace spanned by {pn(x)}N−1

n=0 . The tridiagonal matrix (9) becomes a finite N ×N

matrix H . The real eigenvalues of H , designated as the set {εn}N−1
n=0 , are the zeros of the polynomial pN(x). An approximation

of the density function can be obtained as follows. Let us define the finite Green’s function g
(N)
00 (z) ≡ [(H − z)−1]00. It has the

following continued fraction representation [3]

(10)g
(N)
00 (z) = −1

z − a0 − b2
0

z − a1 − b2
1

z − a2 − · · · b2
N−2

z − aN−1

.

In the limit as N → ∞, g
(∞)
00 (z) ≡ G00(z) is an analytic function in the complex variable z with a branch cut on the real line.

However, in most realistic cases the exact expressions of G00(z) are not known. In such a case, one may use (10) (or any one of the
many alternative expressions [3,9]) for the finite Green’s function g

(N)
00 (z) in a numerical scheme to obtain an approximation for

G00(z). Then, we can write

(11)ρ0(x) = 1

2πi

[
G00(x + i0) − G00(x − i0)

] = 1

π
Im

[
G00(x + i0)

]
.

The approximation may be carried out using the “Analytic Continuation” method [6]. However, there are other schemes to
obtain the approximate density function. Some of these schemes are outlined in Ref. [5]. In all approximation schemes, one utilizes
knowledge of the given 2N − 1 recursion coefficients {an}N−1

n=0 and {bm}N−2
m=0 or equivalently the set of eigenvalues of the N × N

tridiagonal matrix H and one of its submatrices (the one obtained by deleting the first row and first column).
The above formulation can be generalized using the finite Green’s function g

(N)
n,n (z) which can be related to the g

(N)
00 (z) as follows

(12)g(N)
n,n (z) = [

pn(z)
]2[

g
(N)
00 (z) − g

(n)
00 (z)

]
,

where the squared term after the equal sign is identical to unity for n = 0. This Green’s function is associated with the N × N

matrix H and one of its submatrices, which is obtained by deleting the nth row and nth column. The Green’s function Gn,n(z) is
defined as the limit of g

(N)
n,n (z) as N → ∞. Therefore, relation (12) holds true also for Gn,n(z) and G00(z), respectively. Associated

with this Green’s function is the following “generalized density”:

(13)ρn(x) = 1

π
Im

[
Gnn(x + i0)

]
.

This expression can be interpreted as the local DOS at the nth site of the 1D chain. In case the exact Gn,n(z) is not known, one
may use the above expressions (12) for the finite Green’s function g

(N)
n,n (z) in a numerical scheme to obtain an approximation for
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Fig. 1. The lowest four projected densities associated with the system defined by the recursion coefficients (14) with λ = 3/2. These generalized densities were
obtained using the “Stieltjes Imaging” method [8] (crosses) and compared to the exact densities (solid line) of Eq. (17). In the graphs, the approximation size is
N = 20.

Gn,n(z). The three schemes in Ref. [5] to calculate the density function could also be extended to obtain an approximation for the
set of generalized density functions {ρn(x)}N−1

n=0 . n = 0 is the case discussed in the previous paragraph. Fig. 1 shows some of these
generalized densities for the model defined by the following recursion coefficients which are associated with a renormalized version
of the Gegenbauer polynomials1

(14)an = 0, bn = 1

2

√
(n + 1)(n + 2λ)

(n + λ)(n + λ + 1)
, n = 0,1, . . .

where λ is a real parameter greater than 1/2. In the graphs, N = 20 and λ = 3/2. The generalized densities were obtained using the
“Stieltjes Imaging” method (crosses) [8] and compared to the exact densities (solid line). For this model the exact density ρ0(x) is
known:

(15)ρ0(x) = 1√
π

�(λ + 1)

�(λ + 1/2)

(
1 − x2)λ−1/2

, x ∈ [−1,+1].

As a simple illustration, we consider the case λ = 1 then an = 0 and bn = 1/2 which results in the Chebyshev polynomials of the
second kind, Un(x), and the associated DOS is given by

(16)ρ0(x) = 2

π

√
1 − x2.

Taking the limit as N → ∞ in (12), then the imaginary part will relate the projected DOS to ρ0(x) as follows

(17)ρn(x) = 1

π
ImGn,n(x + i0) = [

pn(x)
]2

ρ0(x).

In the derivation of this result we used the fact that g
(n)
00 (z) has a finite number of simple poles with no branch cuts and hence has

zero imaginary part. The averaged DOS, which gives equal weight to each eigenvalue, is defined by

(18)ρ(x) = 1

N

N∑
j=1

ρj (x) = ρ0(x)
1

N

N∑
j=1

[
pj (x)

]2
.

1 These are written in terms of the Gegenbauer polynomials, Cλ
n(x), as pn(x) =

√
�(2λ)

λ

√
(n+λ)�(n+1)

�(n+2λ)
Cλ

n(x).
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Fig. 2. The sum of all N projected DOS associated with the model defined in (14) with λ = 1 for N = 5, 10, 25 (colored solid lines) and compared to the averaged
DOS as given by Eq. (20) (dashed black line). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
Letter.)

In the limit N → ∞ and using the fact that pn(x) = Un(x) are just the Chebyshev polynomials of the second kind which satisfy
the following sum rule

(19)lim
n→∞

1

n

n∑
j=1

U2
j (x) = 1

2(1 − x2)
.

Then (18) becomes

(20)ρ(x) = ρ0(x) lim
N→∞

1

N

N∑
j=1

[
Un(x)

]2 = 1

π

1√
1 − x2

, x ∈ [−1,+1].

This relation is also verified numerically in Fig. 2 where we show the sum of all projected DOS for N = 5, 10, 25 (colored solid
lines) and the averaged DOS as defined by Eq. (20) (dashed black line).

3. Density of states associated with modified recursion relations

In this section we would like to study the effect of changing a single element in the tridiagonal Hamiltonian matrix H which
amounts to a change in one coefficient of the recursion relation. This modification can take place with the diagonal element of H

which physically represents a modification in the scattering potential and consequently can represent the effect of a single impurity
scattering on the spectral density of the original host lattice. We can also modify the off diagonal element of the matrix H which
amounts physically to changing the overlap integral between neighboring sites. The net effect of these perturbations will certainly
depend on the location of the modified site along the 1D chain. Thus our study is concerned with an arbitrary single parameter
modification of the recursion coefficients. The real impurity situation will involves changes in both the diagonal and off diagonal
elements, such a situation is just a linear combination of the two separate cases due to the linear nature of the eigenvalue problem
which is validated by the superposition principle. Details about this general case can be found in Appendix A.

3.1. Perturbation of the kth diagonal element of H(ak)

We consider a 1D chain represented by the tridiagonal Hamiltonian H or, equivalently, by the general three-term recursion
relation

(21)(an − x)Sn(x) + bn−1Sn−1(x) + bnSn+1(x) = 0.

We would like to study the effect of changing arbitrarily a single site potential which is equivalent to changing

(22)ak → âk = ak + μ, k = 0,1,2, . . . .

This situation corresponds to adding a potential scattering of strength μ at the kth site of the 1D chain. The solution of (21) is
known (modulo an arbitrary non-zero function of x) to be polynomials of the “first kind” pn(x) having the initial conditions

(23)p0 = 1, p1 = x − a0

b0
.

Nonetheless, there exists another independent solution in terms of polynomials of the “second kind”, referred to by qn(x), that obey
the same recursion relation (21) but with a different initial conditions

(24)q0 = 0, q1 = 1

b0
.
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That is, qn(x) is, in fact, not a solution of (21) but of the following inhomogeneous recursion

(25)(an − x)qn(x) + bn−1qn−1(x) + bnqn+1(x) = δn0.

It is clear that the recursion relation is not affected by the change (22) for n � k so that our new polynomials called p̂n and q̂n

satisfy

(26)p̂n = pn, q̂n = qn for n � k.

The new polynomials are calculated as

(27)Ŝn+1(x) =
(

x − ân

bn

)
Ŝn(x) − bn−1

bn

Ŝn−1(x),

with Ŝn = p̂n, q̂n and Ŝn = Sn for n � k. Analysis of this recursive relation for n > k gives the following result

(28)Ŝk+n(x) = Sk+n(x) − μ

bk

p
(k+1)
n−1 (x)Sk(x), n � 1,

where {p(m)
n , q

(m)
n } are the polynomials associated with the tridiagonal matrix obtained from the original one, H , by deleting the

first m rows and m columns (also called the mth “abbreviated” tridiagonal matrix [10]), and pn = p
(0)
n and qn = q

(0)
n . That is, p

(m)
n

and q
(m)
n are polynomials of the first and second kind satisfying the following three-term recursion relation

(29)(am+n − x)Sn(x) + bm+n−1Sn−1(x) + bm+nSn+1(x) = 0, n � 1

with initial conditions given by

(30)p
(m)
0 = 1, p

(m)
1 = x − am

bm

and q
(m)
0 = 0, q

(m)
1 = 1

bm

.

It is worth mentioning that (28) is valid for Ŝn = p̂n or q̂n while (29) is valid for Sn = p
(m)
n or q

(m)
n .

In order to find a closed form relationship between the new DOS and the unperturbed one, we need to establish a relationship
between the new and original Green functions. One way of calculating the Green’s function G00(z) is by taking the limit as N → ∞
of Eq. (10):

(31)G00(z) = −1

z − a0 − b2
0

z − a1 − b2
1

z − a2 − · · ·

.

Now, given a non-negative integer k we consider the following deformation

(32)ak → ak + μ,

where μ is a real parameter. This deformation changes the two recursion relations above resulting in the new set of orthogonal
polynomials given by relation (28). Now, we want to relate the deformed Green’s function Ĝk

00(z) to the original one G00(z). Using
Eq. (31), we can write for the new Green function

(33)Ĝk
00(z) = −1

z − a0 − b2
0

z − a1 − · · · − b2
k−1

z − ak − μ + b2
kTk+1(z)

where Tm(z) is the “terminator”, which is defined by the infinite continued fraction

(34)Tm(z) = −1

z − am − b2
m

z − am+1 − b2
m+1

z − am+2 − · · ·

.

However, we can also rewrite the original Green’s function in Eq. (31) as

(35)G00(z) = −1

z − a0 − b2
0

z − a1 − · · · − b2
k−1

z − ak + b2
kTk+1(z)

.
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Solving for Tk+1(z) from this equation one obtains

(36)z − ak + b2
kTk+1(z) = b2

k−1

z − ak−1 − b2
k−2

z − ak−2 − · · · − b2
0

z − a0 + 1

G00(z)

substituting this result in Eq. (33) we obtain the sought after relation

(37)Ĝk
00(z) = −1

z − a0 − b2
0

z − a1 − · · · − b2
k−2

z − ak−1 + 1
μ

b2
k−1

− 1

z − ak−1 − b2
k−2

z − ak−2 − · · · − b2
0

z − a0 + 1

G00(z)

.

This expression, although very well suited for stable numerical computations, could be simplified analytically. To this end, we use
relations of the continued fraction to its terminator as ratios involving polynomials of the first and second kind. After few iterative
manipulations, one can show that

(38)z − ak−1 − b2
k−2

z − ak−2 − · · · − b2
0

z−a0+T (z)

= bk−1
qk(z)T (z) + pk(z)

qk−1(z)T (z) + pk−1(z)
,

(39)z − a1 − b2
1

z − a2 − · · · − b2
k−1

z−ak+T (z)

= b0
Q

(k+1)
k (z)T (z) + P

(k+1)
k (z)

Q
(k+1)
k−1 (z)T (z) + P

(k+1)
k−1 (z)

where {P (m)
n ,Q

(m)
n }m−1

n=0 are the polynomials associated with the finite m × m tridiagonal matrix

(40)H(m) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

am−1 bm−2
bm−2 am−2 bm−3 0

bm−3 am−3 ×
× × ×

× × b1
0 b1 a1 b0

b0 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which is obtained from the original one, H as defined by Eq. (9), by keeping the first m rows and m columns and performing the
inversion an → am−n−1 and bn → bm−n−2. That is, P

(m)
n and Q

(m)
n are polynomials of the first and second kind satisfying the

following three-term recursion relation

(41)(am−n−1 − x)Sn(x) + bm−n−1Sn−1(x) + bm−n−2Sn+1(x) = 0, n = 1,2, . . . ,m − 2,

with initial values given by

(42)P
(m)
0 = 1, P

(m)
1 = x − am−1

bm−2
and Q

(m)
0 = 0, Q

(m)
1 = 1

bm−2
.

Inserting the results from Eqs. (38) and (39) into Eq. (37), we can rewrite the modified Green function in terms of the original one
as follows

Ĝk
00(z) = − Âk(z)G00(z) + B̂k(z)

Ĉk(z)G00(z) + D̂k(z)
,

Âk = Q
(k+1)
k (μpk + bkpk+1) − P

(k+1)
k pk,

B̂k = Q
(k+1)
k (μqk + bkqk+1) − P

(k+1)
k qk,

Ĉk = Q
(k+1)
k+1 (μpk + bkpk+1) − P

(k+1)
k+1 pk,
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(a) (b)

Fig. 3. The solid trace shows the deformed DOS for ak → ak + μ as given by the analytic expression (46) and compared to the numerical approximation (crosses).
We used the model defined by the recursion coefficients (14) with λ = 2 and took μ = 0.05 (a.u.). Figs. 3(a) and 3(b) correspond to k = 1 and k = 3, respectively.

(43)D̂k = Q
(k+1)
k+1 (μqk + bkqk+1) − P

(k+1)
k+1 qk,

where P
(m)
m and Q

(m)
m are defined by Sm(x) = (x − a0)Sm−1(x)− b0Sm−2(x). That is, by taking n = m− 1 in Eq. (41) and defining

b−1 ≡ 1 (for the special case m = 1, P
(1)
1 = x − a0 and Q

(1)
1 = 1). Thus, the new DOS and the old one are related by

(44)ρ̂k(E) = B̂k(E)Ĉk(E) − Âk(E)D̂k(E)

|Ĉk(E)G00(E) + D̂k(E)|2 ρ0(E), k = 0,1,2, . . . .

After some algebra and use of the Wronskian-like relation [9]

(45)qnpn−1 − qn−1pn = 1

bn−1
.

We can simplify (44) to read as follows

(46)ρ̂k(E) = Q
(k+1)
k+1 P

(k+1)
k − Q

(k+1)
k P

(k+1)
k+1

|Ĉk(E)G00(E) + D̂k(E)|2 ρ0(E) = ρ0(E)

|Ĉk(E)G00(E) + D̂k(E)|2 , k = 0,1,2, . . .

due to the fact that P
(m)
n and Q

(m)
n satisfy a Wronskian-like relation similar to (45)

(47)Q(m)
n P

(m)
n−1 − Q

(m)
n−1P

(m)
n = 1

bm−n−1
,

where n = 1,2, . . . ,m − 1. However, for n = m the right-hand side is equal to one due to the definition of P
(m)
m and Q

(m)
m given

above. In Fig. 3, we compare this closed form of the DOS as given by Eq. (46) (solid line) to the numerical approximation (crosses).
We used the model defined by the recursion coefficients in (14) for λ = 2 and took μ = 0.05 (a.u.) and k = 1, 3. It is worth
mentioning that for k = 0 we obtain the particular result found by Alhaidari [11]. This situation is analogous to the effect of
potential scattering studied by Kondo [12] where it was found that the main effect of impurity potential scattering on the properties
of the system reduces to an effective DOS

(48)ρ̂k(E) = ρ0(E)

|1 + μG00(E)|2 .

A result which could be deduced from the general formula (46) for k = 0.

3.2. Perturbation of the kth off diagonal term in H(bk)

Going back to the original recursion

(49)(an − x)Sn(x) + bn−1Sn−1(x) + bnSn+1(x) = 0,

we would like to study the effect of changing arbitrarily a single off-diagonal element of H using a scaling parameter γ

(50)bk → b̃k = γ bk, k = 0,1,2, . . .

where γ �= 0. The new polynomials are then defined by

(51)S̃n+1(x) =
(

x − an

b̃n

)
S̃n(x) − b̃n−1

b̃n

S̃n−1(x),
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(a) (b)

Fig. 4. Same as Fig. 3 but for the scaling deformation bk → γ bk with γ = 0.95.

with S̃n = p̃n, q̃n and S̃n = Sn for n � k. Now, after few iterations, we can generalize our previous result and write it in the following
form

(52)S̃k+n(x) = 1

γ
Sk+n(x) + bk

(
1

γ
− γ

)
q

(k+1)
n−1 (x)Sk(x), n � 1.

Similar to the previous case, we need to relate the new Green’s function and density to the original ones. Performing a treatment
similar to that which was carried out in Section 3.1 above, we obtain the following continued faction representation of the Green’s
function associated with this deformed system

(53)G̃k
00(z) = −1

z − a0 − b2
0

z − a1 − · · · − b2
k−2

z − ak−1 − 1

1 − γ 2

b2
k−1

(z − ak) + γ 2

z − ak−1 − b2
k−2

z − ak−2 − · · · − b2
0

z − a0 + 1

G00(z)

.

Using the results obtained in Eqs. (38) and (39) we end up with the following equivalent expression

G̃k
00(z) = − Ãk(z)G00(z) + B̃k(z)

C̃k(z)G00(z) + D̃k(z)
,

Ãk = γ 2bkQ
(k+1)
k pk+1 − P

(k+1)
k pk,

B̃k = γ 2bkQ
(k+1)
k qk+1 − P

(k+1)
k qk,

C̃k = γ 2bkQ
(k+1)
k+1 pk+1 − P

(k+1)
k+1 pk,

(54)D̃k = γ 2bkQ
(k+1)
k+1 qk+1 − P

(k+1)
k+1 qk.

Consequently, the new density becomes related to the original as

(55)ρ̃k(E) = γ 2ρ0(E)

|C̃k(E)G00(E) + D̃k(E)|2 , k = 0,1,2, . . . .

Fig. 4 shows a comparison between this closed form (solid line) and the numerical computation of the DOS (crosses). The same
model is used as that of Fig. 3 with γ = 0.95.

The agreement between the closed form solution we obtained and the direct numerical computation of the modified DOS ob-
tained using the “Stieltjes Imaging” method [8] is clear from this figure.

4. Discussion of results

A general structure resulted in the three situations at hand where all modified orthogonal polynomials can be derived from the
old ones with an additional deformation that depends on the product of the kth order polynomial and a new orthogonal polynomial.
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(a) (b)

Fig. 5. The solid trace shows the generalized deformed DOS corresponding to ak → ak + μ and bk → γ bk as given by the analytic expression (A.2) and compared
to the numerical approximation (crosses). We used the model defined by the recursion coefficients (14) with λ = 3 and took μ = 0.1 and γ = 0.9. Figs. 5(a) and 5(b)
correspond to k = 0 and k = 1, respectively.

The new ones are associated with the kth “abbreviated” tridiagonal matrix obtained from the original one by deleting the first
k + 1 columns and k + 1 rows. The numerical implementation of the corresponding DOS was easily carried out for few cases
while closed form formulae were derived which relate the deformed Green’s functions and DOS to the original ones. The general
structure of the modified Green functions, as expressed in formulae (43), (54) and (A.1), reflects the power and elegance of the
Green function approach in dealing with this type of single impurity problem. In addition this technique provided us with a direct
access to the modified DOS which was expressed in terms of the unperturbed one. As mentioned elsewhere in the mathematics
literature, polynomials resulting from perturbation on the diagonal terms (an) are called co-recursive polynomials while those that
result from dilation of the off-diagonal (bn) are called co-dilated polynomials [13]. We need to stress here that the construction of
new orthogonal polynomials by changing and shifting recurrence coefficients has been a subject of great interest in the mathematics
literature as evidenced in [13] and references therein. The mathematical question usually addressed is concerned with the effect of
changing the recursion coefficients on the orthogonal polynomials [14]. It is our hope that the above derivations are more transparent
and useful to the physics community. We particularly stressed the effect of such deformations on the DOS of the system, a quantity
to which many physical properties are related. The single site deformation we dealt with can mimic the effect of inserting an
impurity (defect) in a given 1D host lattice represented by a tight binding model. It is also the hope that our results will make
significant contributions to studying the effect of such scattering potential provided by the impurity as a function of its location
along the 1D chain. In particular, the effects of this impurity on the band structure of the host lattice and on its potential contribution
to surface bound states. A similar study for 1D system with band gaps will be very beneficial in probing impurity effects on band
edges and bound states within the gap region.
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Appendix A. Perturbation of the kth diagonal and off-diagonal terms in H(ak,bk)

If we now consider the simultaneous deformations ak → ak + μ and bk → γ bk , then using the same procedure in Section 3 we
obtain, after a lengthy algebra, the following general results

Ḡk
00(z) = − Āk(z)G00(z) + B̄k(z)

C̄k(z)G00(z) + D̄k(z)
,

Āk = Q
(k+1)
k

(
μpk + γ 2bkpk+1

) − P
(k+1)
k pk,

B̄k = Q
(k+1)
k

(
μqk + γ 2bkqk+1

) − P
(k+1)
k qk,

C̄k = Q
(k+1)
k+1

(
μpk + γ 2bkpk+1

) − P
(k+1)
k+1 pk,

(A.1)D̄k = Q
(k+1)
k+1

(
μqk + γ 2bkqk+1

) − P
(k+1)
k+1 qk.

Additionally, the corresponding deformed density is related to the original one as follows

(A.2)ρ̄k(E) = γ 2ρ0(E)

|C̄k(E)G00(E) + D̄k(E)|2 , k = 0,1,2, . . . .

It is obvious that what we have obtained in Sections 3.1 and 3.2 above are special cases of these general results corresponding to
γ = 1 and μ = 0, respectively. Fig. 5 shows two examples of the effect of this combined deformation on the DOS.
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