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Abstract

We present an alternative, but equivalent, approach to the regularization of the reference problem in the J-matrix method of scattering. After
identifying the regular solution of the reference wave equation with the “sine-like” solution in the J-matrix approach we proceed by direct
integration to find the expansion coefficients in an L2 basis set that ensures a tridiagonal representation of the reference Hamiltonian. A differential
equation in the energy is then deduced for these coefficients. The second independent solution of this equation, called the “cosine-like” solution, is
derived by requiring it to pertain to the L2 space. These requirements lead to solutions that are exactly identical to those obtained in the classical
J-matrix approach. We find the present approach to be more direct and transparent than the classical differential approach of the J-matrix method.
© 2006 Elsevier B.V. All rights reserved.

PACS: 03.65.Fd; 03.65.Nk; 03.65.Ca

Keywords: Scattering; Tridiagonal representation; Recursion relation; J-matrix method
1. Introduction

The J-matrix is an algebraic method of quantum scattering
with substantial success in atomic and nuclear physics [1]. Its
structure in function space is endowed with formal and compu-
tational analogy to the R-matrix method in configuration space
[2]. The method yields scattering information over a continuous
range of energy for a model potential obtained by truncating
the given scattering potential in a finite subset of an L2 basis
set, {φn}∞n=0. In other words, it is assumed that the scattering
potential is short-range and is well represented by its matrix el-
ements in the N -dimensional subspace spanned by {φn}N−1

n=0 .
The method was extended to multi-channel [3] as well as rela-
tivistic scattering [4]. For a large class of problems that model
realistic physical systems, the Hamiltonian could be written as
the sum of two components: H = H∞+V where H∞ is the free
Hamiltonian. The potential can be written as V = V0 + Ṽ where
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Ṽ is the short range part of the scattering potential while V0 is
the part of the potential that, when added to H∞, gives the “ref-
erence Hamiltonian” H0 = H∞ + V0 which, most importantly,
admits an analytic solution. The exact analytical solvability of
the reference wave equation is the main criterion behind the se-
lective choice of the part of the potential, V0, which could be
included in H0. The basis {φn}∞n=0 is chosen such that it gives
a tridiagonal matrix representation of the reference wave oper-
ator J = H0 − E. The analytic part of the J-matrix approach
is, thus, limited to finding the asymptotic solutions of the ref-
erence H0-problem defined by H0|χ〉 = E|χ〉. The solution to
this problem is of fundamental importance since it will be the
carrier of scattering information generated by the scattering po-
tential Ṽ and transmitted asymptotically by this solution.

Typically, the realization of H0 in configuration space is
given by a second order differential operator. Therefore, the ref-
erence H0-problem has two independent solutions. Both behave
asymptotically as free particles. That is, they have sinusoidal
behavior as sine-like and cosine-like solutions. However, one of
these two solutions is singular (irregular); typically, around the
origin of configuration space. The regularization of the singular
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solution is of prime importance in the J-matrix approach, which
deals only with square integrable function space. These two
independent solutions are essential in scattering calculations
where they are augmented by the contribution of the scattering
potential Ṽ to give the phase shift [5]. The regular solution of
the reference problem, χsin, could be written as a linear combi-
nation of the basis elements χsin(�r,E) = ∑

n sn(E)φn(�r). The
expansion coefficients {sn}∞n=0 are written in terms of orthog-
onal polynomials that satisfy a three term recursion relation
resulting from the matrix representation of the reference wave
equation

∑
m=n,n±1 Jnmsm = 0. Subsequently, we show that

these sine-like expansion coefficients satisfy a second order
linear differential equation in the energy. Hence, we look for
another independent set of solutions to this equation; called
{cn(E)}∞n=0. However, we find out that these expansion coeffi-
cients satisfy the same three-term recursion relation except for
the initial relation (n = 0). That is,

∑
m Jnmcm = γ δn0, where

γ is a real energy dependent regularization constant. Therefore,
the corresponding wavefunction, χcos(�r,E) = ∑

n cn(E)φn(�r),
satisfies a regularized non-homogeneous reference wave equa-
tion that reads

(1.1)(H0 − E)|χcos〉 = γ (E)|φ̃0〉,
where φ̃0 is an element of the set {φ̃n}∞n=0 which is or-
thogonal to {φn}∞n=0 (i.e., 〈φn|φ̃m〉 = 〈φ̃n|φm〉 = δnm) and
limr→∞ φ̃0(r) = 0.

In Section 2, we consider the three-dimensional problem
with spherical symmetry where the reference Hamiltonian is
the partial �-wave free Hamiltonian. We take advantage of a re-
cently obtained integral formula [6] to calculate the sine-like
expansion coefficients {sn(E)}∞n=0. This is a direct integration
approach, which differs from the differential approach of the
original J-matrix method. We then obtain a second order dif-
ferential equation in the energy satisfied by sn(E). The sec-
ond independent solution of this equation is identified with
the expansion coefficients {cn}∞n=0 of the “regularized” cosine-
like wavefunction. We show that this wavefunction satisfies the
regularized reference wave equation (1.1) and has the correct
asymptotic behavior. Finally, in Section 3, we summarize our
findings and discuss the results.

2. Solution to the reference problem

The time-independent radial Schrödinger equation for a
scalar particle in the field of a central potential V (r) reads as
follows

(2.1)

[
−1

2

d2

dr2
+ �(� + 1)

2r2
+ V (r) − E

]
ψ�(r,E) = 0,

where � is the angular momentum quantum number and we
have used the atomic units h̄ = m = 1. Now, we assume that
the range of the potential is finite and thus take the refer-
ence Hamiltonian H0 to be the free kinetic energy operator,

H0 = − 1 d2

2 + �(�+1) . Therefore, the wave equation that de-
2 dr 2r
fines the reference problem is

(2.2)

[
−1

2

d2

dr2
+ �(� + 1)

2r2
− E

]
χ�(r,E) = Jχ�(r,E) = 0,

where J defines the J-matrix operator (H0 − E). The two inde-
pendent scattering solutions (for E > 0) of this equation which
are also energy eigenfunctions of H0, could be found in most
standard textbooks on quantum mechanics [7]. They are writ-
ten in terms of the spherical Bessel and Neumann functions as
follows:

(2.3a)χ�
reg(r,E) = 2√

π
(kr)j�(kr),

(2.3b)χ�
irr(r,E) = 2√

π
(kr)n�(kr),

where k = √
2E. The regular solution is energy-normalized,

〈χ�
reg|χ ′�

reg〉 = δ(k − k′), whereas the irregular solution is not
square integrable (with respect to the integration measure, dr).
Near the origin they behave as χ�

reg → r�+1 and χ�
irr → r−�. On

the other hand, asymptotically (r → ∞) they are sinusoidal:
χ�

reg → 2√
π

sin(kr − π�/2) and χ�
irr → − 2√

π
cos(kr − π�/2).

Now, we look for a complete L2 basis functions, {φn}∞n=0, that
could also support an infinite tridiagonal matrix representation
for the reference wave operator J = H0 − E. One such basis
which is compatible with χ�

reg (i.e., defined in the same range

r ∈ [0,∞], behaves at the origin as r�+1, and square integrable)
is [1]

(2.4)φ�
n(r) = (λr)�+1e−λr/2Lν

n(λr),

where Lν
n(x) is the associated Laguerre polynomial of order

n, ν > −1, and λ is a positive basis scale parameter. Using
the differential equation of the Laguerre polynomials [8] and
their differential formula, x d

dx
Lν

n = nLν
n − (n + ν)Lν

n−1, we
can write

(H0 − E)
∣∣φ�

n

〉 = [
n

2r

(
λ + ν − 2� − 1

r

)

+ λ
� + 1

2r
− λ2

8
− E

]∣∣φ�
n

〉
(2.5)+ n + ν

2r2
(2� + 1 − ν)

∣∣φ�
n−1

〉
.

If we project on the left by 〈φ�
m| then the orthogonality rela-

tion for the Laguerre polynomials [8] dictates that a tridiagonal
representation is obtained only if ν = 2� + 1. Moreover, us-
ing the recursion relation of the Laguerre polynomials and their
orthogonality property we obtain the following tridiagonal rep-
resentation of the reference wave operator

J �
nm(E) = 〈

φ�
n

∣∣H0 − E
∣∣φ�

m

〉
= �(n + 2� + 2)

λ�(n + 1)

(
E + λ2/8

)
×

[
−2(n + � + 1)

E − λ2/8

E + λ2/8
δn,m + nδn,m+1

(2.6)+ (n + 2� + 2)δn,m−1

]
.
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Therefore, if we write

(2.7)χ�
sin(r,E) ≡ χ�

reg(r,E) =
∞∑

n=0

s�
n(E)φ�

n(r).

Then the sine-like expansion coefficients, {s�
n}∞n=0, satisfy a

three term recursion relation obtained from (2.6) as∑
m J �

nms�
m = 0, which reads

(2.8)2(n + � + 1)ys�
n = ns�

n−1 + (n + 2� + 2)s�
n+1,

where y = E−λ2/8
E+λ2/8

= μ2−1/4
μ2+1/4

= cos θ , μ = k/λ, and 0 < θ � π .
To transform (2.8) to the three term recursion relation of a fa-
miliar orthogonal polynomial we rewrite this recursion relation
in terms of the polynomials P �

n (E) = [�(n + 2� + 2)/�(n +
1)]s�

n(E), we then obtain the more familiar recursion relation

2(n + � + 1)yP �
n = (n + 2� + 1)P �

n−1 + (n + 1)P �
n+1,

(2.9a)n = 1,2, . . . ,

(2.9b)2(� + 1)yP �
0 = P �

1 .

The solutions of this recursion relation are unique modulo an
arbitrary function of y which is independent of n. If we fix
this arbitrariness by choosing the normalization P0(y) = 1 then
these will be the Gegenbauer polynomial C�+1

n (y) [8]. Thus,
{s�

n} can now be determined modulo an arbitrary real function of
the energy. At this point we divert from the traditional J-matrix
approach which uses the recursion relation to derive the second
order differential equation obeyed by {s�

n}. Instead, we evaluate
{s�

n} using the orthogonality property of the Laguerre polyno-
mials in the integration of (2.7) giving

s�
n(E) = �(n + 1)

�(n + 2� + 2)

∞∫
0

x�e−x/2L2�+1
n (x)

(2.10)× χ�
reg(x/λ,E)dx,

where x = λr . Rewriting the wavefunction (2.3a) in terms of

the Bessel function J
�+ 1

2
(z) =

√
2z
π

j�(z) and substituting in
(2.10) we obtain

s�
n(E) = √

2μ
�(n + 1)

�(n + 2� + 2)

∞∫
0

x�+ 1
2 e−x/2L2�+1

n (x)

(2.11)× J
�+ 1

2
(μx)dx.

This integral is not found in mathematical tables but has re-
cently been evaluated by one of the authors in [6]. The result
is

(2.12)

s�
n(E) = 1√

π
2�+1 �(n + 1)�(� + 1)

�(n + 2� + 2)
(sin θ)�+1C�+1

n (cos θ).

Now, at this stage we would like to derive the differential equa-
tion obeyed by {s�

n}. For this purpose we use the differential
equation for the Gegenbauer polynomials, Cν

n(y), and show that
s�
n(E) satisfies the following second order differential equation

(2.13)

[(
1 − y2) d2

dy2
− y

d

dy
− �(� + 1)

1 − y2
+ (n + � + 1)2

]
s�
n(E) = 0.
Now, this differential equation is also obeyed by the cosine-like
expansion coefficient, c�

n(E), of the second independent solu-
tion of the J-matrix problem. Thus we are led to seek a second
independent solution for this equation. Therefore, this approach
differs from the construction of the cosine-like solution in the
original J-matrix approach, which is given in Appendix A. Now,
using the fact that y = ±1 are regular singular points then
Frobenius method dictates that the solution has the following
form [9]

(2.14)c�
n(E) = (1 − y)α(1 + y)βf �

n (α,β;y),

where α and β are real parameters such that β > 0 to prevent in-
frared divergence (at E = 0 where y = −1). It should be noted
that the solution that simultaneously satisfies the recursion re-
lation (2.8) and the differential equation (2.13) will be unique
modulo an arbitrary factor which is independent of E and n.
That is, it will only depend on the angular momentum � and
we refer to it as A�. Substituting (2.14) in place of s�

n(E) in
Eq. (2.13) shows that f �

n (α,β;y) satisfies the following differ-
ential equation

(
1 − y2)d2f �

n

dy2
+ 2

[
(β − α) − y

(
α + β + 1

2

)]
df �

n

dy

+
{

2y

1 − y2

[(
α − 1

4

)2

−
(

β − 1

4

)2]

+ 2

1 − y2

[(
α − 1

4

)2

+
(

β − 1

4

)2

− 1

2

(
� + 1

2

)2]

(2.15a)+ (n + � + 1)2 − (α + β)2
}
f �

n = 0

which can be identified with that of the hyper-geometric func-
tion 2F1(a, b; c; 1−y

2 ) [8]

(2.15b)

(
1 − y2)d2F

dy2
+ [−2c + (a + b + 1)(1 − y)

]dF

dy
− abF = 0,

where F is the hypergeometric function. This identification will
be valid provided that

c = 2α + 1

2
,

a = α + β ± (n + � + 1),

(2.16a)b = α + β ∓ (n + � + 1),

(2.16b)(� + 1/2)2 = 2(α − 1/4)2 + 2(β − 1/4)2.

Additionally, we must impose the condition that either α = β or
α +β = 1

2 . Next, we will investigate these two cases separately.
We refer to the resulting expansion coefficients that satisfy the
recursion relation (2.8) for all n by s�

n(E). Others that also do,
but only for n = 0, will be referred to as c�

n(E). Thus, the wave-
function (2.7) with the expansion coefficients {s�

n} satisfy the
reference wave equation (H0 − E)|χ〉 = 0 whereas that with
{c�

n} does not. Nonetheless, the latter will be considered as the
regularized version of the irregular solution in the sense of reg-
ularization defined in the introduction.
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2.1. The case α = β

Maintaining positivity of β , this case produces two solu-
tions. One is valid only for S-wave (� = 0) whereas the other is
true for all values of the angular momentum �. Hence, there
will be two inequivalent solutions for � = 0. For general �,
Eqs. (2.16a) and (2.16b) give

α = β = 1

2
(� + 1), a = −n, b = n + 2� + 2,

(2.17)c = � + 3

2
.

This is the regular solution (2.3a) which we have already found
in (2.7) and (2.12) and called it s�

n(E). This can easily be seen
by noting that 2F1(−n,n + 2� + 2;� + 3

2 ; 1−y
2 ) is proportional

to C�+1
n (y) [10] whereas (1 − y)α(1 + y)β = (1 − y2)

�+1
2 =

(sin θ)�+1. However, for S-wave (� = 0) there exists another
independent special solution where,

α = β = −1

2
� = 0, a = −b = −n − 1,

(2.18)c = 1

2
,

corresponding to 2F1(−n − 1, n + 1; 1
2 ; 1−y

2 ), which is the
Chebyshev polynomial of the first kind, Tn+1(y) [8]. Therefore,
the expansion coefficients of the reference wavefunction are

(2.19)c0
n(E) = A

n + 1
Tn+1(cos θ) = A

n + 1
cos(n + 1)θ,

where A is an overall factor, which is independent of E and n.
Now, this solution satisfies the three term recursion relation
(2.8) with � = 0, but not the initial relation (i.e., for n = 0).
That is why we called it c0

n(E) and not s0
n(E). In fact, one can

easily show that it satisfies an inhomogeneous initial relation
which reads as follows

(2.20)2yc0
0 = 2c0

1 + A.

This is a crucial point. As stated in the Introduction, it means
that the associated regularized wave function, χ�

cos(r,E) =∑
n c�

n(E)φ�
n(r), with these expansion coefficients does not

solve the reference wave equation (H0 − E)|χ〉 = 0 since∑
m J �

nmc�
m = 0. However due to the physical requirement

that χ�
cos(r,E) should behave asymptotically in the same way

as χ�
irr(r,E), the initial relation is changed as expressed in

Eq. (2.20) which implies that
∑

m J 0
nmc0

m = −λA
2 (μ2 + 1

4 )δn0.
This means that χ�

cos solves the following regularized inhomo-
geneous wave equation

(2.21)(H0 − E)
∣∣χ0

cos

〉 = − kA

2 sin θ

∣∣φ̃0
0

〉
,

where φ̃0
0(r) = λe−λr/2 and 〈φ�

n|φ̃�
0〉 = δn0. One can easily find

the value of A to be −2/
√

π by equating the asymptotic behav-
ior of χ�

cos(r,E) with that of χ� (r,E).
irr
2.2. The case α + β = 1
2

Again, maintaining positivity of β , this case gives two so-
lutions as well. One is valid for all � where Eqs. (2.16a)
and (2.16b) give

α = −1

2
�, β = 1

2
(� + 1), a = −n − � − 1

2
,

(2.22)b = n + � + 3

2
, c = −� + 1

2
,

corresponding to(
cos

θ

2

)�+1(
sin

θ

2

)−�

(2.23)× 2F1

(
−n − � − 1

2
, n + � + 3

2
;−� + 1

2
; sin2 θ

2

)
.

This hypergeometric function is a nonterminating series be-
cause none of the first two arguments will ever be a negative
integer. However, we can use the transformation [8],

(2.24)2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z),

to write it in the following alternative, but equivalent, form

(2.25)(sin θ)−�
2F1

(
−n − 2� − 1, n + 1;−� + 1

2
; sin2 θ

2

)
.

Now, this hypergeometric series is a finite polynomial of order
n + 2� + 1 in sin2 θ

2 . Using the fact that c�
n(E) = A�[�(n +

1)/�(n + 2� + 2)]P �
n (E) we can, therefore, write

c�
n(E) = A�

�(n + 1)

�(n + 2� + 2)
(sin θ)−�

(2.26)

× 2F1

(
−n − 2� − 1, n + 1;−� + 1

2
; sin2 θ

2

)
,

where A� is an overall factor, which is independent of the en-
ergy E and the index n. One can verify that this solution satis-
fies the three-term recursion relation (2.8) for all � but not the
initial relation (when n = 0). Instead, it satisfies the following
inhomogeneous initial relation

(2.27)

2(� + 1)yc�
0 = 2(� + 1)c�

1 + (2� + 1)A�/
[
�(2� + 2)(sin θ)�

]
.

The corresponding wavefunction does not satisfy the reference
wave equation but, as expected, an inhomogeneous one that
reads

(2.28)(H0 − E)
∣∣χ�

cos

〉 = −
(

� + 1

2

)
A�k(sin θ)−�−1

∣∣φ̃�
0

〉
,

where now φ̃�
0(r) = λ(λr)�

�(2�+2)
e−λr/2. There might be several

ways to obtain the overall factor A�. A direct approach is to
equate the asymptotic (kr → ∞) expression of χ�

irr(r,E) in
Eq. (2.3b) to that of χ�

cos(r,E) with the expansion coefficients
given by Eq. (2.26). In such an approach, one utilizes the as-
ymptotic behavior of the Laguerre polynomials [8]. However, a
simpler approach is to use the Green’s function method shown
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in Appendix A. By comparing Eq. (A.1) to Eq. (2.28) we ob-
tain γ (E) = −(� + 1

2 )A�k(sin θ)−�−1 which when inserted in
Eq. (A.4) gives γ = −W/2〈χreg|φ̃0〉, where W(E) is the Wron-
skian of the regular and irregular solutions [given by Eqs. (2.3a)
and (2.3b)] of the reference wave equation. That is, γ (E) =
−W(E)/2s�

0(E). Now, for our problem, which is defined by
the reference wave equation (2.2) and solutions in (2.3), the
Wronskian is − 4

π
k. Using this and the value of s�

0(E) given
by Eq. (2.12) for n = 0 along with the fact that �(2� + 2) =
22�+1π− 1

2 �(�+ 3
2 )�(�+ 1) we obtain A� = − 1

π
2�+1�(�+ 1

2 ).
It is easy to verify that the S-wave solution obtained above in
(2.19) is a special case of (2.26) with � = 0 and A = A0. Now,
similarly to the previous case, we also find another independent
special solution for S-wave (� = 0) where,

α = 1

2
, β = 0, a = −n − 1

2
, b = n + 3

2
,

(2.29)c = 3

2
,

corresponding to (1 − y)
1
2 2F1(−n − 1

2 , n + 3
2 ; 3

2 ; 1−y
2 ). Using

the transformation (2.24) this could be rewritten as (sin θ) ×
2F1(−n,n + 2; 3

2 ; 1−y
2 ). Alternatively, we could write it as

sin θ
n+1Un(y), where Un(y) is the Chebyshev polynomial of the
second kind [8]. Therefore, the expansion coefficients of the
reference wavefunction in (2.7) are

(2.30)s0
n(E) = B sin θ

n + 1
Un(cos θ) = B

n + 1
sin(n + 1)θ,

where B is a factor, which is independent of E and n. Now,
one can easily verify that this solution satisfies the three term
recursion relation (2.8) with � = 0, as well as its initial relation.
That is why it was referred to as s�

n(E). In fact, one can easily
show that this solution is a special case of that in (2.12) with
� = 0 and B = 2/

√
π .

3. Conclusion

Now, we collect our findings and give a brief summary of the
results obtained above for the 3D spherically symmetric prob-
lem with finite range scattering potential, Ṽ (r), and whose ref-
erence Hamiltonian, H0, is the free kinetic energy operator. Two
solutions were obtained as infinite expansion in the discrete
square integrable basis (2.4). We identified one of them with
the regular solution of the problem where the expansion coef-
ficients are given by (2.12). The other is a regularized version
of the irregular reference solution with expansion coefficients
given by (2.26). These regularized reference wavefunctions are
used in scattering calculations by writing the asymptotic solu-
tion to the full problem, H = H0 + Ṽ , as

(3.1)lim
r→∞ψ(r,E) = χ�−(r,E) + e2iδ�(E)χ�+(r,E),

where χ�±(r,E) = χ�
cos(r,E) ± iχ�

sin(r,E) and δ�(E) is the
energy-dependent phase shift that contains the contribution of
the short range scattering potential Ṽ (r) for a given value of the
angular momentum �. One can calculate δ�(E) using any con-
venient approach based on the chosen scattering method [1,3].
The above regularization scheme is to be compared with the
usual J-matrix method of scattering (see Appendix A). It is
believed that this alternative approach is more transparent but
equivalent to the usual J-matrix method.
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Appendix A. Regularization in the J-matrix method

We have seen that one of the solutions of the wave equa-
tion (2.2) is regular χreg(r,E) while the other one is irregular
χirr(r,E). In the original J-matrix approach [5] the solution to
the reference Hamiltonian H0 is accomplished as follows:

(1) We choose an L2 basis set {φn}∞n=0 which ensures a tridi-
agonal representation for H0.

(2) The sine-like solution is identified with the regular so-
lution of the reference wave equation (H0 − E)χ(r,E) = 0.
This solution χreg(r,E) is then expanded in the L2 basis func-
tions whose coefficients {sn(E)} are shown to obey a three
term recursion relation. A first order differential equation (in
the energy) satisfied by sn(E) is obtained. This together with
the three-term recursion relation gives a second order differen-
tial equation whose two independent solutions are sn(E) and
cn(E).

(3) The irregular reference solution, χirr(r,E), being sin-
gular at the origin cannot be expanded in an L2 basis set.
Thus a regularized cosine-like solution, χcos, is chosen so
that it obeys an inhomogeneous differential equation (H0 −
E)|χcos〉 = γ (E)|φ̃0〉, where γ (E) is an energy dependent reg-
ularization parameter. With this requirement the constructed
χcos has the correct asymptotic behavior, is regular at the origin
and its expansion coefficients {cn(E)} obey the same three term
recursion relation as the {sn(E)} for n > 0 but not for n = 0.
Thus, χcos could be expanded in terms of the square integrable
basis, {φn}∞n=0, as |χcos〉 = ∑

n cn|φn〉.

Obviously, the above traditional approach could be general-
ized to make χcos satisfy the following inhomogeneous equa-
tion

(A.1)(H0 − E)χcos(r,E) = γ (E)ξ̃ (r),

where ξ̃ (r) is a regularizing function that belongs to the space
spanned by {φ̃n} such that limr→∞ ξ̃ (r) = 0. For a given
ξ̃ (r) the parameter γ is evaluated by matching χcos and χirr
at the boundary of configuration space. Applying the two-
point Green function G0(r, r

′,E), which is formally defined as
G0(r, r

′,E) = 〈r|(H0 − E)−1|r ′〉, on Eq. (A.1) one obtains [5]

(A.2)χcos(r,E) = −γ

∞∫
G0(r, r

′,E)ξ̃ (r ′) dr ′
0
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with G0(r, r
′,E) = 2

W(E)
χreg(r<,E)χirr(r>,E), where r< (r>)

is the smaller (larger) of r and r ′ and W(E) is the Wronskian
of the two independent reference solutions χreg and χirr which
is independent of r . Substituting this in Eq. (A.2) we get

χcos(r) = − 2γ

W(E)

[
χirr(r)

r∫
0

χreg(r
′)ξ̃ (r ′) dr ′

(A.3)+ χreg(r)

∞∫
r

χirr(r
′)ξ̃ (r ′) dr ′

]
.

It is worth mentioning that (A.3) ensures the two boundary con-
ditions imposed on the regularized solution χcos. That is, it is
proportional to χreg(r) as r → 0 and to χirr(r) as r → ∞. Tak-
ing the limit as r → ∞ (where χcos equals χirr) we obtain

(A.4)γ (E) = −W(E)
/(

2

∞∫
0

χreg(r
′,E)ξ̃ (r ′) dr ′

)
.

For a given set of chosen regularization parameters, {bn}, we
can write ξ̃ (r) = ∑

n bnφ̃n(r). Substituting this together with
χreg(r,E) = ∑

n sn(E)φn(r) in Eq. (A.4) we obtain

(A.5)γ (E) = −W(E)
/(

2
∑
n

bnsn(E)

)
.

In the classic version of the J-matrix method [5], regularization
is performed by choosing bn = δn0.
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