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Abstract

Using a spin dependent discrete nonlinear Schrodinger equation ( DNLSE) we study
the transport properties of a single nonlinear impurity connected to two perfect
leads. The charge build up at the impurity site is taken into account through the use
of a self consistent Hartree mean field approach. The transmission and conductance
through the localized impurity is being considered in the presence of both local
nonlinear interaction and a magnetic field which lifts the spin degeneracy at the
impurity site.
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1 Introduction

In studying the transport properties through mesoscopic devices Spin-
Dependent Electron-Electron Interaction (SDEEI), is one of the main sources
of nonlinearity that must be considered when solving the Schrödinger Equa-
tion [1]. Considering such nonlinearities, the modified version of this equation
is known as the Discrete Nonlinear Schördinger Equation (DNLSE) which
provided greate insight into many physical systems ranging from polaron and
soliton related problems to nonlinear electrical and optical problems in quan-
tum nanostructure devices [2]. In the case of SDEEI, nonlinearity studies re-
vealed some interesting properties, like non-vanishing magneto-conductance,
which are of great importance in technology. In our present work, the SDEEI
is the main source of nonlinearity in the Schrodinger equation describing a
single impurity, or under certain special conditions a quantum dot [3], in an
infinite tight binding (TB) Hamiltonian system. This system is similar to the
one studied in reference [1] but with charge build up effects included by solv-
ing the problem self-consistently [4]. This is an essential modification to the
previous model since in nano-structures, like semiconductor quantum dots,
the dominant contribution to the capacitance charging energy arises from the
on-site Coulomb repulsion. This repulsion is a dynamical property of the nano-
structure, or impurity, that cannot be considered fixed over time or possible
statistical configurations of the system as was assumed previously. Intuitively,
it should increase as charge builds up inside the nano-structure device and this
should affect the dynamics of the system significantly. From the experimental
point of view the physical dimensions of these nano-structures have reached
levels such that their capacitance can be as small as 10−16 F which can give
rise to a Coulomb charging energy Ec = e2/2C ' 0.1 meV much larger than
the energy spacing between the single particle states of the quantum structure
or impurity. Under these conditions, the interplay between Coulomb interac-
tion and energy quantization plays a decisive role in the explanation of the
main properties of these nano-structure devices [5].

In this paper, we will extend the results found in a previous work by
one of the authors [1] by including charge build up effects through a self-
consistent technique first introduced by Cota et al [4] in the context of the
general Coulomb electron-electron interaction. Their results showed the charge
build up clearly in a quantum dot system along with its other manifestations
like the resonance energy shifts and narrowing of the resonance widths. Even
though the origin of the electron-electron interaction is different in our model
from that of Cota, we still use the same form of the DNLSE. In contrast to
Cota’s case where a single DNLSE was used to solve the problem, in our case,
two coupled DNLSE’s will be used self-consistently one for each of the spin
states. This shows that correlation effects between the two spin states play
an important role and are included from the outset in our mean field model.
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Furthermore, Confinement and Contact effects (with leads) were also excluded
in our model to concentrate only on the charging effects.

The rest of our paper is organized as follows. In Section 2 we introduce our
model and derive the main equations used in this numerical study. In section
3 we provide our main results by evaluating numerically the transmission and
conductance of our system along with the magneto-conductance. In the last
section we present our conclusions with a summary of the main results.

2 Theoretical Model

The model we consider consists of three regions: a single magnetic im-
purity at n = 0 , and two perfect semi-infinite leads on the left −∞ < n < 0,
and the right 0 < n < +∞ described by a tight binding Hamiltonian. The
nonlinear interaction exists only at the impurity site n = 0, and its magnitude
is proportional to the product of the probability densities of up and down
spin states at the impurity site. This is a simple model that exhibits electron
spin correlations which will have some drastic consequences on the transport
properties. The DNLSE describing our system reads [4]

i
d

dt
Ψn,σ +

∑
m

Vn,mΨm,σ + ( εn,σ + Uδn,0 ρn )Ψn,σ = 0. (1)

where Ψn,σ(t) and εn,σ are the probability amplitude of finding the electron
at site n and the corresponding local energy, respectively, at site n for an
electron with spin σ. The on site energy εn,σ = εn − σB is defined in terms of
the zero–field on–site energy level εn shifted by the Zeeman energy. Thus, ε0,σ

is the local energy at the impurity site. Vn,m is the overlap integral which in
general, depends only on the distance between the two sites m and n, so that
Vn,m = Vm,n. U is a parameter measuring the strength of the local Coulomb
interaction. This repulsive interaction arises from the charge accumulation at
the impurity site and shifts the energy levels of the opposite spin states. Thus
we expect our model to adequately describe the nonlinear effects due to charge
accumulation at the impurity site, and will also be valid in the extreme case
of a quantum dot containing only one quantum level. The main results of this
paper are pivoted around replacing the electronic charge Single State Local
Density (SSLD) ρn−σ =| Ψn−σ(E) |2 , which was used in previous studies of
this model, by the average local density defined through the density of states
g(E) in the infinite TB system. Now E plays the role of Fermi energy for the
many body problem and the incident electron at the Fermi level will have to
interact via Coulomb interaction with all occupied states below the Fermi level.
Contrary to previous approach [1] where we considered a single orbital problem
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and consequently the incident electron interacts via Coulomb interaction only
with opposite spin due to Pauli principle. Thus the new Average Local Density
(ALD) is given by:

ρn =
∑
σ

E∫

−2

g(E ′) | Ψnσ(E ′) |2 dE ′. (2)

Thus in this Hartree approximation the incident electron feels the effective
on-site energy Uρn(E) which is positive, so that the whole spectrum moves
upward in energy. In this approach the nonlinear term is described not by a
single orbit of the incident electron like in our previous work [1] but rather by
the sum of all orbits below the Fermi energy ( strictly speaking the energy of
the incident electron because Fermi energy is not defined for a single electron
problem ). This approach is then by necessity a mean field approach which
howerver allows for more than a single orbital and it is very suitable for the
implementation of charging effect.

The modified DNLSE includes self-consistency by replacing the previous
local density with this average one. Let us find the stationary states of (1), i.e.
we look for solutions of the type Ψn,σ(t) = eiEtΨn,σ(E) where E is the asso-
ciated eigenvalue. We restrict ourselves to a nearest–neighbors tight-binding
approximation. Let Vn,n+1 be the hopping integral between the n-th and the
(n + 1)-th site, then under these assumptions our previous equation becomes

(E − εn,σ)Ψn,σ = Vn,n−1Ψn−1,σ + Vn,n+1Ψn+1,σ + δn,0 UρnΨn,σ. (3)

Since we are not interested in the effect of the leads on the transmission
properties of the system we choose the hopping integrals to be unity all over
our system.

3 Transmission Coefficient and Conductance

To study the scattering properties of our system we send a plane wave
from the left lead towards the nonlinear magnetic impurity located at the
origin ( n = 0 ) and study its transmission. Thus, we assume that our solution
has the following asymptotic form

Ψn,σ =





(Iσe
ikn + Rσe

−ikn)χσ for n ≤ −1

Tσe
iknχσ for n ≥ 1

. (4)
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Where Iσ, Rσ and Tσ are the amplitudes of the incident, reflected and trans-
mitted parts of the wave, respectively. The quantity χσ describes the electronic
spin state which is assumed to be conserved all along the transmission process
since we are ignoring spin flip. Inserting Eq.(4) into Eq.(3) for n=0,±1, and
after using the lead’s dispersion relation E = 2V cos(k), where the on-site ener-
gies are set to zero for simplicity, the transmission coefficient, τσ ≡ |Tσ|2/|Iσ|2,
is found to obey the following nonlinear equation

τσ =
4 sin2 k

∣∣∣
(
2 cos k − ε0,σ − U

∫ E
0 τ−σ|I−σ|2g(E ′)dE ′

)
− 2eik

∣∣∣
2 (5)

We note that the incident wave amplitude |I−σ| renormalizes the nonlinearity
term to an effective Coulomb strength Ueff = U |I−σ|2. Since we are not inter-
ested in renormalization effects due to the incident wave, we set the amplitude
of the incident wave to unity independently of the spin, |Iσ|2 = 1. This sim-
plifying assumption will not affect the conclusions of our present work. Note
that not only we have a nonlinear transmission in this problem, but the spins
are also correlated due to the fact that transmission for the up spin depends
on the transmission of the down spin, as it is clear from equation (5). It is
implicit in this last equation that τσ = τσ(E) depends on the energy of the
incident electron.

We obtained our results using two independent numerical methods. The
first method is by solving equation (5) self-consistently. This method is the
main method used in producing the results of this paper since it turned out
to be faster. We also used the iteration method defined by equation (3) which
gave similar results and served as a numerical check. In all our numerical com-
putations we set the energy unit to be the host hopping integral ( i.e. V = 1 )
and all other energies are counted in units of V. The transmission is found by
numerically solving equation ( 5 ). Figure 1 shows the transmission as a func-
tion of energy for different values of the nonlinearity at zero magnetic field.
The persistence of the resonance at the center of the energy band is clear from
this figure. This result is expected since the local density defined by (2) van-
ishes at the center of the energy band and hence leads to the vanishing of the
nonlinear interaction. As the nonlinearity increases, the energy band width for
transmission decreases significantly but remains symmetric around the center
of the band. We also need to point out that due to our choice of parameters
where are all overlap integrals are taken to be unity and consequently the im-
purity is strongly coupled to the leads resulted in a broad transmission curve
as shown in Figure 1.

As the magnetic field is introduced, the spin degeneracy is lifted and the
symmetry of the transmission is broken as is evident in Figure 2. The fact that
the magnetic field lowers the local energy of the up spins and increases the
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energy of the down spins plays an important role in the transport properties of
the spin channels. In Figure 2, spin down and spin up transmissions are shifted
towards the negative and positive energy band regions, respectively. However
these transmission curves are almost completely symmetric by reflection with
respect to the center of the energy band. This gives rise to a vanishingly small
zero temperature magneto-conductance ( ZTMC ). This is a major correction
to previous study related to the SSLD case [1] where the ZTMC was found to
be finite. Resonances in transmission at certain values of the magnetic field
still exist in the ALD case as shown in Figure 4, albeit extra work is required
to investigate them. This is so since resonances are not easily tractable as in
the SSLD case where they could be found using a closed form formula based
on a simpler version of equation (5).

The conductance spin polarization ( also called magneto-conductance )
is defined by ∆G = G↑−G↓ where Gσ is the two-probe conductance ( in units
of 2e2/h̄ ) for a single spin channel at finite temperature and is defined by the
thermal average of the transmission coefficient [6]

Gσ(T, µ) =
∫ (

−∂f(µ,E)

∂E

)
τσ(E)dE. (6)

Here f(µ,E) is the Fermi-Dirac distribution function given by

f(µ,E) =
(
e(E−µ)/kBT + 1

)−1
, (7)

where kB is the Boltzmann constant and µ the chemical potential of the sam-
ple. Since the derivative of the Fermi-Dirac function is a strongly peaked func-
tion of E, which vanishes everywhere except for energies close to the chemical
potential, µ, the integral will be essentially zero outside an interval of width
kBT . The conductance, in general, will be enhanced if the chemical poten-
tial is close to a set of transmission peaks ( resonances ) and reduced when
the chemical potential is away from resonant transmission peaks. Thus the
conductance as a function of temperature will exhibit several characteristic
structures depending on the location of the chemical potential. In our case
since we are just interested in the field dependence of the conductance and
the effect of the nonlinear interaction we will fix our chemical potential to
zero in all computations. We should also keep in mind that our energies are
counted in units of V , which in general is of the order of few meV. Thus while
computing the conductance in Eq.(6) it should be born in mind that temper-
atures of the order of T ' 10−1− 10−2 are reasonably low temperatures while
T ' 1 correspond to high temperatures.

We have calculated the conductance numerically using the transmission
coefficient obtained from equation 5. At very large temperatures T À B (
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recall that we set Boltzmann constant to unity ) both spin channels will be
suppressed and so does the conductance as shown in Figure 3. At low tem-
peratures the up spin conductance dominates the transport while the down
spin conductance is negligible as shown in the above figure. Thus at low tem-
peratures we observe a substantial magneto-conductance as shown in Figure
4. Such an effect can play an important role in spin sensor applications in
nano-structure devices. As the nonlinearity increases, both spin conductance
channels approach zero. Its maximum increases with nonlinearity and shifts
towards higher values of the magnetic field, this also reflects the fact that this
the origin of this huge magneto-conductance is purely a nonlinear effect as
shown in the inset of figure 4.

4 Conclusion

We have studied the effect of spin dependent charging effect on the trans-
port properties of a single nonlinear impurity model using a self consistent
approach that ensures the good implementation of the nonlinear Coulomb in-
teraction term. The Discrete Non-Linear Schrodinger Equation(DNLSE) was
used to investigate the effect of charge build up on the transmission and con-
ductance of a single magnetic impurity system embedded in an infinite tight
binding hamiltonian. Charge build up has been shown to change the transmis-
sion properties drastically due to the Zeeman effect which lifts the degeneracy
of impurity energy levels giving rise to major differences in the zero temper-
ature limit of the conductances . This in turn gave rise to huge differences
in the linear magneto-conductance of the system. In the ALD case, the zero
temperature magneto-conductance was shown to be vanishingly small for large
values of the nonlinearity in contrast to the SSLD case where it is finite and
substantial. The ALD case can be seen as an important correction to the SSLD
case and the behavior of the conductances it predicts is more trustworthy.
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Fig. 1. Transmission versus energy at zero magnetic field for different values of the
nonlinearity parameter U.

Fig. 2. Transmission versus energy for a nonlinearity parameter U = 3 and magnetic
field B = 0.5.
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Fig. 3. Spin down, spin up and total conductance versus magnetic field for temper-
ature T=0.1 and nonlinearity parameter U = 3.

Fig. 4. The magneto-conductance versus magnetic field for temperature T=0.1 and
different values of the nonlinearity parameter U.
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