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Abstract

We calculate the I-V characteristic of a tunnel junction con-
taining resonant centers in the barrier distributed over a finite energy
band and having an arbitrary location within the barrier . The on
site Coulomb interaction , U, between two electrons of opposite spin
causes the I-V characteristic to show some peculiar features when eV
~ U. The effect of the variation of the energy bandwidth and position
of the impurity levels on I-V characteristics is also investigated.
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The presence of localized states in a tunnel junction changes dra-
matically the I-V characteristic of the junction [1]. At low temperatures
two tunneling channels contribute to the current. The first one is the usual
direct tunneling between the leads while the second one is a resonant tunnel-
ing through impurity states in the barrier. This last mechanism dominates
at low temperatures and for thin junctions. This resonant contribution has
been observed in several types of semiconductor structures experimentally
[2]. Resonant tunneling occurs when the energy of the tunneling electrons
is close to the energy of a localized state within the insulating layer. The
process of resonant tunneling via localized states is of central importance in
many physical systems attracting current attention. In the single electron
picture, the total resonant current is simply the sum of the currents pass-
ing through each individual resonant channel. In principle, two electrons
with opposite spin can occupy each resonant site, and thus each localized
site gives rise to two resonant channels. In the presence of a large on-site
Coulomb interaction, U, the tunneling becomes strongly correlated [3].

In this paper we restrict ourselves to the case of resonant tun-
neling and calculate the I-V characteristic of the junction. We calculate the
current by taking into account the Coulomb repulsion between two electrons
of opposite spin residing simultaneously at the impurity site. In systems
such as amorphous silicon (a-Si) junction with short range scattering centers
randomly distributed in the barrier [4] each localized site arising from un-
coordinated Si-Si bond, is essentially a strongly localized potential well. A
simple estimate of the order of magnitude of the on-site Coulomb interaction,
U =~ e?/ka, using the value of the static dielectric constant for crystalline sil-
icon k ~ 12 and localization length a ~ 7A one finds U ~ 0.1 eV which is
very large compared to thermal energy kT, set to be the unit of energy in
this work.

We will consider only the resonant tunneling contribution. The
hamiltonian describing our system can be written as the sum of the following
terms

H=H;+H;+ Hyp (1)

where Hj, is the leads hamiltonian, H; is the impurity hamiltonian and Hp
is the tunneling hamiltonian and are given by

H;, = Z kol Ope + Z ﬁpga;aapg (2)
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H, = Z(ega;’ag+§Ungn_g) (3)

g

Hy = Z(Tka,jgao— + h.c.) + Z(Tpa;;aag + h.c.) (4)
po

ko

Here a;, a, and a; are the creation operators for an electron in the spin

state o at the left lead, right lead and the localized state, respectively. T}
is the transition matrix element between wave functions at energy €, in the
left lead and the localized wave function at €, in the barrier, similarly for T,
. U is the on-site Coulomb interaction and €, = € + opuH is the energy of
an electron with spin ¢ = &+, € is the energy of the localized state reckoned
from the Fermi level and pH is the Zeeman magnetic energy. Two types of
localized state contribute to tunneling, those with ¢, close to the Fermi level
and consequently are able to accept their first electron called A-type and
those whose energy ¢, is an amount U below the Fermi level and are able to
accept a second electron to such a site near the Fermi level, these are called
B-type. In the large U limit the occupation of an A site can be either zero or
one while that of B site can be either one of two. However these two energy
levels are related by particle-hole symmetry: n, — 1 — n, applied to the
hamiltonian (3).

Consider a junction with a single localized state in it and let Py,P,,
and Py be the probability for this state to be empty, singly occupied by a
spin o or doubly occupied, respectively, and can be defined as follows

Po=<(1-n)(1=ny) > ;P,=<n,(1—n_,) > ;Pp=<nm; > (5)

Where < --- > stands for the statistical average. The equantion of motion
of n, is given by the Heisenberg equation of motion :

ih%ng = [ny, H] (6)
One can then write the exact equations of motion of the occupation prob-
abilities Px and end up with a higher order correlation functions for which
equations of motion should be set up, this process will lead to a hierarchy of
equations. A standard procedure enable us to solve these equations by de-
coupling higher order correlations and expressing them in terms of product
of lower order correlations [5]. Another easier way to proceed is to invoke
the standard master equation approach [6] which was used in the context
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of resonant tunneling in some previous publications [7]. Assuming that the
temperature is much larger than the width of the localized state so that one
can use the master equation approach to establish the equations of motion.
In this formalism the tunneling term is treated as a perturbation so that the
Fermi golden rule gives the transition rate of electrons across the junction. In
this case the level widths express the degree of hybridization of the resonant
center with the extended states at the electrodes. In the limit that the level
width of the resonant site is much smaller than all the other relevant energy
scales such as the bias voltage and temperature, one can derive the follow-
ing dynamic equations which can also be derived from the above mentioned
equation of motion amended with a decoupling scheme

P, = 27r§kj T3 [fe(€s) Po — (1 — frl€s)) Pylo(€r — €ko) + 27 Ekj T3, |2
X [fr(€s)Pog — (1 = frl€s)) Po)d(€y + U — €4o) + (k < p) (7)

PQ = 271'; |Tk|2[fk(€U)P_g — (1 — fk(Eg))PQ](S(GU + U — Ekg) +

21> | T P [fp(€0) Py — (1 = fyl€r)) P2lo(€s + U — €p) (8)

These equations can simplified to the following compact form

P, = 2T[fu(es)Po— (1 — fi(es))Py] + 2T [fr(es + U)P-,
— (1= frles + U))Po] + 2T r[fr(es) Po — (1 — fr(€s)) Ps)
+ 2FR[fR(€0' + U)P—O' - (1 - fR(EO' + U))PQ] (9)

Py = Y 2U[frleo +U)P, — (1= fr(e, + U)) Py
+  g[frles +U)P_y — (1 — frley +U))Py] (10)

Where X stands for the time derivative of the variable X and the level widths
due to tunneling to the right and left leads are defined as usual by

Tp=m) |Til*5(ex —€) 3 Tr=7>_ |T,["5(e, —€) (11)
k P
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The Fermi functions in the left ( f(x) ) and right ( fr(z) ) leads are defined
by
frir(x) = (exp[B(x — prsp)] +1)7" (12)

The quantity [ is the inverse temperature , and p; and pgr are the left
and right chemical potentials, respectively. We have choosen the chemical
potential at the right lead as our origin for the energies ( i.e. pgp = 0 and
pr, = eV, V is the applied voltage ). Probability conservation allows Py to
be expressed in terms of P, and Py while the current through the junction
is defined in terms of the total electronic charge in one of the leads, say the
right lead, Q@ = e3_,, < nys > and is given by

I = ez<hpg>
po

= 26FL Z[fL(GU)PO_ (1 _fL(GO'))PO'—i_fL(eO'_'_U)P*U

g

— (1= fr(es + U)) Py (13)

Since we are interested in studying the I-V characteristic in the
absence of applied magnetic field, the spins do not play any role in our present
problem. The density of states in the leads will be constant if the bands are
broad (wide band model). If the hopping matrix elements also vary slowly
with energy, then the width of the resonant level, I', will be independent of
energy and will be treated as a constant in this paper. Under steady state
conditions we can solve our equations (9-10) for P, and P, which, in their
turn, are plugged into equation (13) to give the following expression for the
current due to a single resonant level at €

fule)A = fr(e+U)) = fr(e)(A = fr(e+ U))
[AL(€) + Ar(e) /o]

The quantities Ay (€) and Ag(e) are defined by

I(€) = 2el'g x (14)

Ap(e) =1+ fr(e) = fr(e4+U) ; Ar(e) =1+ fr(e) — fr(e+U) (15)

Where a = I', /T’ defines the asymmetry parameter between the impurity
couplings to left and right leads. We have chosen the chemical potential at
the right lead as our origin for the energies, ur = 0., since the results are
independent of the value of the right chemical potential. The current will
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depend only on the applied voltage , V, between the leads. While doing
the numerics we have chosen our energy unit to be the thermal energy kT
. In figure 1 we show I(V) due to a single impurity level in the symmetric
Anderson model where ¢ = —U/2 in our case we chose U = 20, ¢ = —10
and different values of the asymmetry parameter a. The curve show two
sharp peaks around € and € + U which are basically the resonant centers
contributing to tunneling and called A-type and B-type, previously. The
strength of these peaks decreases as the asymmetry parameter o decreases.
The area under these curves basically represents the current averaged over
a uniform distribution of impurity centers. Thus we can conclude that the
major contribution to the current comes from impurities located at the center
of the junction (o =1 ) in accord with previous work[3, 8].

In order to calculate the I-V characteristic of the junction we must
proceed through some averaging because from the experimental point of view
the total current measured is due to a large number of impurities. We assume
that the localized states have a finite band with a constant density of states
g, while the spacial distribution of the localized state obey the so called 9-
distribution where the localized states are uniformly distributed over a plane
parallel to the junction interface having a specific coordinate z from the left
interface inside the insulating layer. In recent years molecular beam epi-
taxy techniques have been developed in semiconductor technology in which
dopant atoms are confined in a single plane of the host material, the so called
- doping [10]. The measured thickness of the doping layer is limited by the
resolution of the technique. However, in general we can say that dopants can
be confined to within 154, which correspond roughly to three atomic layers.
Hence to compare our results with experiment we need to perform averaging
energies of the impurities. Note that the expression of the current we ob-
tained (14) strongly depends on the position of impurity which is reflected in
the parameters I';, and ['g. Assuming a wide band approximation in which
the bandwidth in the leads is much larger than the resonance width so that
the density of states can be taken as constant. The hopping matrix elements
are assumed to be energy independent and decay exponentially

| Thp| = Toexp(—2L,r/a) (16)

where z;, r denotes the distance from the localized state to the left and right
lead, respectively, while a is the localization length and 7j is a constant.



Under these assumptions the decay widths to the left and leads ( Eq.7 ) will
reduce to the following forms [9]

[, =FEexp(—2z/a) ; T'r = Fexp(—2(d— z)/a) (17)

Here 2z denotes the distance from the impurity to the left lead, d is the width
of the junction, a is the impurity localization length which is known to be
around 7A in Mo/a-Si/Mo tunnel junction [8]. To the first order approxi-
mation the pre-exponential factor, E, may be considered as independent of
the coordinates and is a measure of the effective depth of the localized state.
The formula of the single impurity current (14) depends on the coordinates
only through I';, and I'p in its denominator.

Using the above mentioned averaging technique we can evaluate the
averaged current < I > assuming a uniform distribution of impurities over
the barrier

<1>:s/¢¢@ﬁ@ (18)

where I(¢€) stands for equation (14) which gives the current due to a single
impurity at a given position z and with a given energy e, S is the lateral
area of the junction. The quantity g(e) is the density of impurity states ,
assuming it to be constant within a finite band of width D so that

so-{ " ST 19)

the averaged current reads

(O — frle+ U)] — fr(e)[1 — fr(e + U)]
[Ar(€) + AL(e) /]

where Ij is a constant that depend on the characteristics of the junction and
the width of the energy distribution

< I(U) >= I, /L; delt (20)

Iy = 2eST /2D (21)

Formula (20) is symmetric under left/right transformation , that is when (
I'r,a) = (['z,1/a). That is why we restrict ourselves to values of « in the
range [0,1] in our numerical computations. Evaluating the current (20), for
a fixed value of the potential U, we found that it shows a kink (Fig.2) at a
value of the applied voltage equal to the Coulomb energy, U. The slope of
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the I-V characteristic ( the differential conductance ) changes abruptly from
applied voltages less than U to voltages greater than U ( see Fig.2 ). Hence
it is more instructive to plot the conductance as a function of the applied
voltage ( Fig.3 ). One important feature to notice is that there is a step in
the differential conductance as the applied voltage V becomes comparable
to U. The magnitude of this step gets reduced when a decreases from 1 to
0. At finite temperature the step itself get smoothed out due to thermal
fluctuations. In Fig.3 we have considered only positive values of the applied
voltages, the region V' < 0 can be obtained by reflection symmetry about the
V = 0 axis.

In Fig.4 we show the [-V characteristic for small values of the
Coulomb interaction compared to the energy bandwidth ( U = 5 and D
= 20 ). In this case the current shows a negative differential resistance (
NDR ) contrary to Fig.2 where such an important feature of electronic de-
vices is missing. It is well known in the literature [11] that the ability of a
resonant tunneling diode to show NDR is not exhibited in the infinite band
model. Our point here is that NDR are exhibited not solely by the finiteness
of the energy bands in the leads but it can also result from the finiteness of
the impurity band as it is the case in our situation.

In Fig.5 we show the I-V characteristic for a Coulomb interaction
larger than the impurity bandwidth, here the current shows some extra struc-
tures due to the competition of the applied voltage with the other energy
scales in the problem: U and D. Basically the current reaches its maximum
value when impurity levels: € and € + U are within the transport window of
the junction ( between pgr and pg ). In Fig.6 we show the current through
the localized state as a function of the energy of the localized state for differ-
ent values of the applied voltage while U was fixed to 20. At small voltages
the main contributions to the current originate from the two resonant peaks
( dotted curve ). Thus for eV < U the I (¢) presents two peaks, the lower
comes from tunneling through the upper level for impurities deep below ug
( thus the current flows through the upper level only ) while the upper peak
is due to impurities whose resonant level is above i and the upper level is
above py, ( thus the current flows predominantly through the resonant level
). As we increase the Voltage this resonant structure is suppressed ( dashed
) and shoulders appear at -U, 0, U and 2U for extremely high voltages (
continuous curves ).

The calculations presented in this work shows that the width of the



localized states energy distribution within the barrier plays an important role
in the I-V characteristic. In the case of wide energy bands ( D > eViuz, Vinae
is the maximum value of the applied voltage ) and in the absence of applied
magnetic field the Coulomb blockade effect is reflected in the existence of a
current step in the differential conductance, G. This step gets reduced with
a decrease of the asymmetry parameter a. The I-V characteristic has a non-
Ohmic behavior since it has a kink at eV = U, whose magnitude depend
on «. The current is linear in the applied voltage only in the wide band
limit ( D > €eV,,.: ) and change slope at V. = U. Of course for extreme
values of the asymmetry a ~ 0 and a ~ oo,our present approach should be
modified so as to take into account the strong Coulomb interaction between
the lead and the localized state which became very close to it in this limit.
In the case of narrow impurity band ( D < €V, ) the current displays a
nonlinear behavior. The most important feature of resonant tunneling diodes
i.e. their ability to show negative differential resistance is also restored in the
case of narrow impurity bands. Generally speaking, due to the presence of
strong Coulomb on-site interaction the current is maximum only when the
two impurity levels € and € + U are within the transport window ( between
pr and pp ). In fact the current is almost zero when both impurity levels
are well below the right chemical potential or well above the left chemical
potential.
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Figure Captions

Fig.1 The I-V characteristic ( in arbitrary units ) for a single localized state
at e = —U/2 with U = 20.

Fig.2 The I-V characteristic of the tunnel junction averaged over a wide en-
ergy band ( D = 100 ) of localized states for different values of the asymmetry
parameter . The parameter U is fixed to be 20 in units of kT.

Fig.3 The conductance ( in arbitrary units ) as a function of the applied
voltage for different values of the asymmetry parameter «, the parameter U
is fixed to 20.

Fig.4 The -V characteristic of the tunnel junction for U =5, D = 20 (
units of kT ) and different values of the asymmetry parameter («).

Fig.5 The I-V characteristic of the tunnel junction for U = 20 , D = 5 (
units of kT ) and different values of the asymmetry parameter («).

Fig.6 The current through the localized state ( in arbitrary units ) as a
function of the localized state energy for different values of the applied voltage
and U = 20.
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