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Abstract

We study the effect of nonlinear interaction, and finite coupling,
Vb, to the leads on the transmission properties of a finite 1D chain of N
atoms. The two-probe dc conductance, G, through a finite interacting
chain connected to reservoirs is studied both in the T'=0 and T # 0
cases. At T = 0 we observe that, for E = 0, perfect transmission
occurs for odd values of N while for even N, the transmission reaches
its minimum value. This results in an even-odd oscillatory behavior
which becomes suppressed at higher temperatures. The two-probe
conductance is also seen to be drastically reduced when the strength
of the nonlinear interaction, U, is of the order of the inter-site coupling.
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1 Introduction

Electronic transport in low dimensional systems is a subject of recent
interest due to its importance in the physics of nanostructure devices [1]
which have a huge potential application in the future electronic and opto-
electronic devices. Progress has been especially rapid in recent years due to
the development of advanced crystal growth and lithography techniques that
facilitated sophisticated experiments at the nanoscale level [2]. Apart from
their potential use as novel devices, such systems are also interesting from a
fundamental physics point of view. Because of their finite size, the electronic
properties of these nanostructures will most likely dependent on the size of
the system, on the interaction between electrons and on the strength of the
confining potential.

When electrons are confined to a small region of a semiconductor
they form a quantum dot. Quantum dots are small islands of electrons that
are governed by the interplay of quantum mechanical and electrostatic ef-
fects. By trapping electrons in a zero dimensional quantum dot a complete
quantization of the electron’s free motion is realized and the charge on the
dot is also quantized. It is now possible to control their shape, dimensions,
the structure of the energy levels, and the number of confined electrons. Of-
ten, quantum dots are referred to as ” artificial atoms ” because electronic
states within closed dots are quantized, permitting spectroscopic measure-
ments [2]. Conductance studies have demonstrated that transport through a
small confined electron gas or quantum dot is strongly regulated by Coulomb
interaction [3]. It is possible to study the transmission of electrons through
a quantum dot by coupling the states in the dot to external leads via tunnel
barrier. Furthermore the charge on the dot is quantized and can be con-
trolled by a nearby metallic gate. The discrete charging energy gives rise to
the phenomenon of Coulomb blockade, which manifests itself in the form of
periodic peaks in the transmission ( or two probe conductance ) as a function
of gate voltage. This phenomenon has been under intensive study in recent
years.

It is known that the electron-electron interaction is important in
any serious study of the transport properties of small systems such as quan-
tum dots and finite quantum wires [4]. The Coulomb interaction, generally
speaking, gives rise to a nonlinear term in the Schrodinger equation. In this
case the Coulomb interaction is modeled by a cubic non local term in the
equation of motion of the corresponding fermionic field operators. To pro-



ceed further a Hartree-Fock approximation for the nonlinear term is used [5].
One can also use a perturbative approach in the Coulomb interaction [6]. In
my present study I take the alternative approach of studying the effect of the
electron-electron interaction as being modeled by a nonlinear local term in
the Schrodinger equation. One can look at such an approximation as being
a Hatree like approximation of the original many body problem. Besides its
relevance to our electronic systems, the nonlinear interaction was also a sub-
ject of intensive research both from the theoretical and experimental point
of view [7] because of its importance in optical and electronic devices. In
particular it has been shown that nonlinearity gives rise to multistability ,
noise and might originate a chaotic behavior in certain systems. Recently,
transport properties of nonlinear chain of atoms and double barrier structures
under applied electric fields have been examined [8]. In their work Cota et
al. [8] showed that the resonances shift in the presence of nonlinearity and
that their width decreases as the nonlinearity becomes stronger.

In this paper we report on the numerical calculation of the two-
probe conductance and the transmission coefficient of a finite interacting 1d
system connected to two perfect leads. Since in our present study we are
not concerned with the charging effect, which is of primary importance for
quantum dots, we will not take into consideration the confining potential of
the chain. In section 2 we introduce our model and explain the principle of
our numerical approach. In section 3 we evaluate the transmission coefficient
both in the presence and absence of nonlinear interaction. In section 4 we
present, the numerical results of the finite temperature conductance and study
the effect of the on site Coulomb interaction on the conducting properties
of the finite chain. Finally in section 5 we present our conclusions with a
summary of our basic results.

2 Theoretical Model

In this letter we would like to investigate the effect of the on site non-
linear interaction on the transmissive properties of a tight binding system
described by Anderson hamiltonian. We use the standard Anderson model
to describe this system . The model consists of three regions ( see Fig.1 ) ;
a finite chain at sites 1 < i < N + 1, and two semi-infinite leads on the left
—00 < ¢ < 0, and the right N +2 <7 < +00. The nonlinear Schrodinger
equation we will be studying in this work is derivable from the following



discrete Hamiltonian

H=Y |eUVi0,+ > V,nUil, + %U R (1)
n m#n

where W, (t) is the complex amplitude and ¢, the energy at site n ( n
= 1,2,---, N+1, N being the size of the chain ). U is the strength of the
on-site interaction within the chain and V,,,, is the overlap integral which
depends, in general, only on the distance between the two sites m and n,
so that V,,,,, = Viu,n. Note that ¥, and ¢V, form canonically conjugate
variables and %\I!n = _a(?—g;; is the corresponding equation of motion. From
the above Hamiltonian we then obtain

i%llln => Vam¥nm+ (6, +U | T, )T, (2)
m#n

Our theoretical model (2), which is basically an effective one electron prob-
lem, does not yield an exact solution of the actual many electron system rep-
resenting nanostructure devices. The Coulomb interaction between confined
electrons is a long range interaction. So our model ( 2 ) does not correspond
to the well known Hubbard model, which is often used as a model hamilto-
nian describing nanostructure devices. Nevertheless, the nonlinear discrete
Schrodinger equation ( 2 ) contains some essential features of the interacting
system, that is, the repulsive and nonlinear nature of the interaction.

Let us study the stationary states of the above nonlinear Schrodinger
equation i.e. we look for solutions of the type W, (t) = e™*#'W, (E) where
E is the associated eigenvalue. We restrict ourselves to the tight-binding
approximation, where only nearest neighbor hopping is allowed for. Let
Vin+1 be the hopping integral between the n-th and the (n+1)-th site, then
under these approximations our previous equation becomes

(E - Gn)\Ijn — n,nflanfl + Vn,n+1\Ijn+1 + U|\Iln|2\11n (3)
where the hopping integrals are defined by

Vi, forn<0orn>N+42
Vans1 =3 W for n=0and n=N+1 (4)
Vo for1<n<N

The hopping matrix element within the leads is denoted by Vi, the link
between the leads and our system is described by the hopping matrix ele-
ment Vj while hopping within the system is described by Vs. Before going
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any further let me mention that the above discrete nonlinear Schrodinger
equation ( DNSE) can be derived, in principle, from the more general non-
linear Schrodinger equation i0;¥ + 0?¥ + f(x,| ¥ |*)¥ = 0. The function
f(x,| ¥ |?) characterizes the effective self-interaction of the quasiparticles
in the system. It is important to point out that our nonlinear Schrodinger
equation model defined by equation ( 3 ) does not correspond exactly to the
classical Hartree approximation of the Hubbard model. In the Hartree ap-
proximation of the Hubbard model the nonlinear term is described not by a
single orbit as described in equation ( 3 ) but rather by the sum of all orbits
below the Fermi level.

From the computational point of view equation ( 3 ) is very useful, it
relates the values of the wave function at three successive discrete locations
along the x-axis, it is often referred to as Poincare map in the literature
[10, 9]. For one dimensional systems the discretization of the Schrodinger
equation can be performed exactly [9]. The solution of equation ( 3 ) is
done iteratively by taking our initial conditions Wy = 1 and ¥ _; = exp(ik),
the lattice spacing is set to unity all along this article. We consider here
an electron having a wave vector k incident at site N+2 from the right ( by
taking the length of chain L = N, i.e. N+1 sites ) the transmission coefficient
can then be expressed as [10, 11]

4sin’ k

T = —
|‘I’N+2 — Uy eXP(—Zk)|

(5)

Thus the transmission coefficient depends only on the values of the wave
function at the end sites, ¥ ,o , ¥ .3 which are evaluated from the iterative
equation (3). In the region outside the chain, the leads are described by a
non-interacting tight-binding hamiltonian for which the dispersion relation
reads

E = 2V cosk (6)

which relates the incident electronic energy, E, to the propagation wave num-
ber k. For convenience, we measure all energies in units of V7, i.e. we set
Vi, =1 in our numerical computations.

3 Transmission Coefficient

We consider first the problem of transmission of an electron incident
on a quantum wire where the nonlinear interaction is neglected. In this case



our previous equation reduces to

(E - En)\pn = n,n—lllln—l + Vn,n—l—l\pn—i—l (7)

In the absence of nonlinear interaction the system is symmetric with respect
to left-right exchange so that we can assume unit transmission and iterate to
get the incident amplitude. We assume an incident wave having an energy
E, when it passes through our sample part of it will be transmitted and part
of it will be reflected so that one can write for the wave amplitude

ikn —ikn <
U, = e lk:— Re for n <1 (8)
Te for n>N+1

the wave vector k is defined through the semi-infinite leads dispersion E =
2V}, cos k, within the system the propagation wave vector is also assumed to
obey a similar dispersion E = 2V cos k;. The on site energy ¢, is taken to be
zero for simplicity. After a small exercise using the transfer matrix method
we find the following result [12].

A

TP = 4[Bsin(k L) + Csin(k (L — 1)+ A ©)
A= -l )

B = L= -
NIRRT

c - ( _ V_L2> £

Vid) Vi
Clearly when Vg =V, = Vj, the transmission is unity as expected irrespective
of the sample length. We would like to study the behavior of this transmission
as a function of V. We notice first of all that this two probe conductance (
G = |T|? in units of 2e%/h, where the factor of 2 takes the spin into account
) has an oscillatory behavior as a function of L. This oscillatory behavior
originates from the sinusoidal length dependence of the denominator in the
transmission coefficient ( 9 ). We have plotted in Fig.2 the transmission
coefficient as a function of energy for even and odd N. This figure shows

clearly that the Fermi level ( 4 = 0 ) is located at the maximum of the
transmission for odd N and at the valley for even N. Thus as the length

1 <E2 E* V] Vﬁ)



grows from even to odd values, the conductance jumps from a point on the
even pattern to the next on the odd pattern or vise versa. This oscillatory
behavior of the two probe conductance is a characteristic of ballistic systems.
Also we should expect that the amplitude of this even-odd oscillations to
depend strongly on the energy of the incident electron and on the magnitude
of the interaction with the leads, V5. This feature can be easily seen from ( 9
) if we set E = 0 ( thus k; = 7/2 ) then the transmission becomes unity for
odd lengths and has a finite value, which depends on Vj, for even lengths.

Now let us turn to the interacting system described by ( 3 ). In Fig.3
we show the effect of the nonlinear interaction on the transmission coefficient
for N =4, U =0.02, Vs =1 and Vj; = 0.2. Tt is clear that the resonance
are shifted to higher energies while their width is being reduced compared to
the non-interacting case ( continuous line ). Since the nonlinear interaction
term in equation ( 3 ) is positive, the incident electron feels the effective on
site energy U | ¥, |? which is positive, so that the spectrum moves upward
in energy.

4 Coulomb Interaction and Temperature Ef-
fects on the Conductance

In order to obtain a realistic picture of our model, it is convinient to
include in our study finite temperature effects. The two-probe conductance
(in units of 2¢/h ) at finite temperature is defined by the thermal average
of the transmission coefficient [13]

6. - [ (-2 ey (10

Here f(p, E) is the Fermi-Dirac distribution function given by

flu, E) = (=i 4 1)~ (11)

k is the Boltzmann constant and u the chemical potential of the sample. Since
the derivative of the Fermi-Dirac function is a strongly peaked function of E,
which vanishes everywhere except for energies close to the chemical poten-
tial, p, the integral will be essentially zero outside an interval of width kT.
Thus one should expect strong variations of the conductance with variations
in the chemical potential. The conductance, in general, will be enhanced if
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the chemical potential is close to a set of transmission peaks ( resonances
) and reduced when the chemical potential is away from resonant transmis-
sion peaks, thus the conductance as a function of temperature will exhibit
several characteristic structures depending on the location of the chemical
potential. In our case since we are just interested in the thermal effect on
the even-odd oscillatory behavior and the effect of the nonlinear interaction
on the conductance we will fix our chemical potential to zero in all compu-
tations. We should also keep in mind that our energies are counted in units
of Vi, which in general is of the order of few meV. Thus while computing
the conductance in (10 ) it should be born in mind that temperatures of
the order of T ~ 10~ — 1072 are reasonably low temperatures while T ~ 1
correspond to high temperatures.

We have calculated the conductance numerically using the trans-
mission coefficient obtained in the previous sections. In Fig.4 we show the
behavior of the conductance for U =0., Vo =1,V =04, p=0and T =
0.1. Tt is clear from this figure that the even-odd oscillations are damped
due to the energy integration over kT range at finite temperature. Thus the
oscillatory behavior at finite temperature survives only at small length scales
as seen in figure 4. In Fig.5 we study the behavior of the conductance as
a function of the sample length for Vg =2, V5 =0.5, p =0, T =0.02 and U
= 0.1. As expected the repulsive nonlinear interaction tends to localize the
electronic states and consequently will reduce the conductance in general.
From this figure we note two important signatures, one is the decay of the
oscillatory behavior of the conductance which is presumably due to thermal
fluctuations similarly to what happened in Fig.4, we call this feature the ther-
mal decay envelop. Second, within this thermal decay envelop we observe an
oscillatory behavior which is certainly due to the nonlinear interaction. The
explanation of this observation is not trivial. We have a resonant behavior
of the conductance which is damped by thermal effects. We know that the
number of resonances is length dependent, whenever the length increases the
number of resonances also increases. At these resonances the transmission is
maximum but in order for this resonance to give a substantial contribution
to the conductance we need the resonant energy to be very close ( within kT
) to the chemical potential set to be zero in our computation. Now from our
recursive relation ( 3 ) we realize that under the action of a nonlinear inter-
action we can define an effective energy E = E — U | ¥, |? for our traveling
electron. At the resonant energies of the chain the effect of the nonlinearity
is to shift approximately these resonances to the right and reduce their width



as can be seen from Fig.3. Thus at certain lengths when one resonant level
coincides with the chemical potential ( 4 = 0) the conductance will resonates
while increasing the length a little more puts this resonance off the chemi-
cal potential and consequently reduces its contribution to the conductance.
Increasing the length a little more will bring another to coincide with the
chemical potential and makes the conductance resonate, but with less mag-
nitude because the resonance width has been reduced, and so on. In Fig.6
we present the behavior of the conductance as a function of the strength of
the nonlinear interaction U normalized to its non-interacting value G(U =
0). We see from this figure that the magnitude of the conductance decreases
sharply when the Coulomb interaction becomes comparable to the inter-site
hopping energy, set to unity in our computations ( Vo = Vs =1 ).

5 Conclusion

We have studied in this article the effect of a nonlinear interaction on the
transmissive properties of a finite one dimensional system. An atomic chain
of N interacting atoms connected to two semi-infinite non-interacting leads.
At T = 0 and in the absence of nonlinear interaction we have found that
the system displays an even-odd oscillatory behavior in the linear conduc-
tance. These oscillations are strongly energy dependent and occur whenever
the energy of the incident electron coincides with one of the resonances of
the finite chain. For instance if the energy of the incident electron is set
to E = 0, then for odd N, the isolated chain has an eigenstate at E = 0 (
Fermi level ), which will give rise to a resonant state when coupled to the
leads and hence contributes to perfect transmission. On the other hand,
for even N, there is no discrete eigenstate at E = 0 for the isolated chain
and consequently no perfect transmission will arise for the coupled chain.
A similar behavior is also abserved at other resonant energies of the finite
chain. At finite temperatures, this even-odd oscillation is eventually damped
due to thermal fluctuations, the even-odd oscillations survive only for small
samples in this case. The finite temperature two probe conductance is also
observed to be reduced drastically when the Coulomb interaction is of the
order of the inter-site hopping energy. Thus the even-odd oscillatory behav-
ior is sensitive to many parameters in the model. In particular it is very
sensitive to the strength of the coupling to the leads, to the temperature
and the strength of the nonlinear interaction. Our results are in qualitative



agreement with the recent computations of Oguri [6] using a perturbative
Green function approach at T = 0 and the finite temperature calculations
for non-interacting quantum wire considered by Yamaguchi et al. [14] using
a T-matrix approach. This agreement by itself constitutes a strong support
to the fact the discrete nonlinear Schrodinger equation captures some of the
most important features of the interacting system.
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Figure Captions

Fig.1

Schematic picture of the model: (e) interacting region, (o) noninteracting
leads.

Fig.2
The transmission coefficient versus energy for U = 0., Vo =1, V;, =04, N
= 10 ( continuous ) and N = 11 ( dots ).

Fig.3
The transmission coefficient versus energy for Vo= 1, V) = 0.2, N =4, U =
0.02 ( dots ) and U = 0 ( continuous ).

Fig.4
The normalized conductance versus length for U =0., Vo =1, V;, = 0.4,
=0and T =0.1.

Fig.5
The normalized conductance versus length for Vo =2, V= 0.5, u =10, T =
0.02 and U = 0.1.

Fig.6
The normalized conductance versus the strength of the Coulomb interaction
UforVs=Vy=1,E=p=0,N=2and T=0.4.
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