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Abstract

We study the three-dimensional Dirac and Klein—-Gordon equations with scalar and vector potentials of equal magrifudes
as an attempt to give a proper physical interpretation of this class of problems which has recently been accumulating idferest.
We consider a large class of these problems in which the potentials are noncentral (angular-dependent) such that the egfuations
separate completely in spherical coordinates. The relativistic energy spectra are obtained and shown to differ from those of
well-known problems that have the same nonrelativistic limit. Consequently, such problems should not be misinterpreteccas the
relativistic extension of the given potentials despite the fact that the nonrelativistic limit is the same. The Coulomb, oscijlator
and Hartmann potentials are considered. Additionally, we investigate the Klein—-Gordon equation with uneven mix of potegtials
leading to the correct relativistic extension. We consider the case of spherically symmetric exponential-type potentials regplting

in the S-wave Klein—Gordon—Morse problem.
0 2005 Published by Elsevier B.V.

PACS: 03.65.Ge; 03.65.Pm; 03.65.Ca
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1. Introduction

The success of quantum mechanics in the description of the atomic and sub-micro world is very impressivé and
overwhelming. Supplementing this theory with special relativity created one of the most accurate physical thébries
43
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in recent history. An example is quantum electrodynamics: the theory that describes the interaction of charged parti-
cles with the electromagnetic radiation at high speeds or strong coupling. The Dirac equation and the Klein—Gordon
(KG) equation are the most frequently used wave equations for the description of particle dynamics in relativis-
tic quantum mechanics. The fact that these two equations, for free particles, are constructed using two objeets: the
four-vector linear momentum operatBy, = i%9,, and the scalar rest maas, allows one to introduce naturally two 5
types of potential coupling. One is the gauge-invariant coupling to the four-vector potehyjial 7)}220 which s
is introduced via the minimal substitutid?), — P, — gA,, whereg is a real coupling parameter. The other, is an
additional coupling to the space—time scalar poteistial7#) which is introduced by the substitutiod — M + S. 8
The term “four-vector” and “scalar” refers to the corresponding unitary irreducible representation of the Poircaré
space—time symmetry group (the group of rotations and translatio(&-inl)-dimensional Minkowski space— 10
time). Gauge invariance of the vector coupling allows for the freedom to fix the gauge (eliminate the nonphysical
gauge modes) without altering the physical content of the problem. There are many choices of gauge fixing that
one could impose. The Lorentz gaugg A" = dpAo + V.A= A /120t + V- A =0, and the Coulomb gauge, 13
V. A =0, are two of the most commonly used conditions. However, many choose to simplify the solution otthe
problem by taking the space component of the vector potential to vanishi(keQ). If we adapt this later choice 15
and write the time component of the four-vector potentiag A5 = V (¢, 7), then we end up with two independent?¢
potential functions in the Dirac and KG equations. These are the “vector” pot&néiat the scalar potentiél e

In the relativistic unitsk = ¢ = 1, the free Dirac and KG equations are writter{iag'd,, — M)¥p(t,7) =0and 18
(919, + M?)Wg(t,7) = 0, respectively. The convention of summing over repeated indices is used. For parti¢les

of spin 1/2, {y*} are 4x 4 constant matrices with the following standard representation: 20
21

o (1 O . (0 & 2

where[ is the 2x 2 unit matrix ands are the three % 2 hermitian Pauli spin matrices. The vector and scaldf
couplings mentioned above introduce potential interactions by mapping the free Dirac and KG equations éSpove

into the following:
27

{yo[i% —V(r,?)]+i;7.%—M—S(r,?)}%(ﬁ):o, (1.2a) zz
0 2 30
{—[ig — V(?)} — V24 [S() + M]Z}x//KGG) =0, (1.2b) =
32

respectively. Recently, interest in the solutions of these two equations for the cases\WheretV (7) has surged. 33
For the most recent contributions, with citations to earlier work, one may consult the pafiHrai references 34
therein. 35

In this Letter, we set out to present a critical investigation of this céise+V, considering the more general 36
situation where the potentials are angular-dependent (noncentral) such that the Dirac and KG equations arg com
pletely separable in spherical coordinates. We target studies that present an improper physical interpretatiorsof the
solutions of such problems. However, studies that are aimed at the investigation of issues that are relevant te» thes
problems such as the pseudo-spin symmetry in nuclear pH$iasd the effect of the breaking of this symmetryzo
do not fall within the scope of our work. We will show (by example) that the solutions of such problems do4not
coincide with those of well-established problems that have the same nonrelativistic limit. The Coulomb, os¢illa-
tor and Hartmann potentials will be studied. This constitutes a (sufficient) proof that although the nonrelativistic
limit is well-defined and unique, the relativistic extension is not. Thus, the physical interpretation of the relativistic
problem should not be confused with those that may have the same nonrelativistic spectrum or similar streecture
of the potential functions. The formulation of the problem will be carried out in the following section whereas
illuminating solutions for several examples will be obtained in Secdiohhe KG equation with§ = nV will be 47
investigated in Sectiod, wheren is a real parameter such thatt +1. We consider the example of radial expo-s
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nential potentials and show that in this case the correct relativistic description (the S-wave Klein—Gordon—Morse

problem) is obtained as long agelates to the physical parameters of the problem in a special way and suchzhat

In| > 1. 3
4

5

2. Formulation of the problem and solution of the angular equations 6
7

For time-independent potentials we can write the total wavefunctiod @sr) = e_i‘”lﬂ(?), wheree is the °
relativistic energy. Consequently, the Dirac and KG equat{trza) and (1.2become, respectively, °
10

M+ S+ V() —ig -V 2% Vi@ 218)

—io -V M - SF+VF) ) \y-() Y- () ' 12

13

(V24 [VE) -] = [SG) + M }yka () =0, (2.1b) 1

wherey (y_) is the top (bottom) two-component spinor $f. Now, if we takeS = £V, then the potential 12
contribution in the Dirac Hamiltonian will be eith¢?} 3) or (3 .%). It is believed that such a singular potentlal17
structure might result in irregular behavior of the solution. Nevertheless,Switht V Eq. (2.1a)gives one spinor

h 18
component in terms of the other as

19
. 1 L = . 20

Yx(r) = m(—la V)Y (r), (22) »

22

wheree # FM. This equation is referred to as the “kinetic balance” relation. Sineet-M (e = —M) is an ele- ,,
ment of the positive (negative) energy spectrum of the Dirac Hamiltonian, then this relation with the top (botjem)
sign isnot valid for the negative (positive) energy solutions. Substituting from (E@) into the Dirac equa-
tion (2.1a) with S = £V, results in the following second order differential equation 26
27

[V2—2(e £ M)V (7) + &% — M2]yra(F) =0, (23) L

giving ¥4 (_) as an element of the positive (negative) energy solutions. To obtain the other spinor componenit, we
use the kinetic balance relati¢®.2) with the top (bottom) sign. Therefore, the choite- +V (S = —V) dictates  *°

that the solution of Eq(2.3)does not include the negative (positive) energy states. This observation highlights'the
second critical property in this kind of problems that has to be considered carefully when presenting the ph¥sical

interpretation. It associates with each choice of potential configuration one sector of the energy spectrunt>only

the positive or the negative, but not both. This unsymmetrical treatment of the energy spectrum, where hIf of

the spectrum is missing, is known to create problems such as particle—antiparticle interpretation of the relaﬁf’/lstlc
theory[3]. As for the KG equatioif2.1b) we obtain the following, fol§ = +V -
[V2—2(e £ M)V (7) + &% — M2|ya (F) =0, (2.4)
39

which is identical to Eq(2.3) for y-. Nonetheless, physically this equation describes a scalar particle (spind)
whereas Eq(2.3) describes a spinor particle (spii2). However, mathematically this equivalence of the Diraa
representation to the KG representationthe presence of interaction constitutes a constraint on the physicakz
interpretation3]. Moreover, the nonrelativistic limit, which is obtained by taking M = E, where|E| < M, 43
implies that the negative energy solutions (correspondingo— V) are free fields since under these conditionss
Eq.(2.3)and Eq.(2.4)reduce to 45
46

12, _ 47
(Zﬁv +E)wv) 5 ¥
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wherekE is the nonrelativistic energy ané stands fory_ or yxg. On the other hand, the positive energy states

(whereS = +V) in the nonrelativistic limit are solutions of

1 =2 - o\
[ﬁv —2V(r)+E}p(r)_O, (2.6)

whereys stands for eithetyy or ykg. This is the Schrodinger equation for the potentigl. Zhus, we conclude

that only the choice&s = +V produces a nontrivial nonrelativistic limit with a potential functioW,2and notV'.

Accordingly, it would be natural to scale the potential terms in(Ed.a)and Eq(2.1b)so that in the nonrelativistic

limit the interaction potential becomds, not 2V. Therefore, we modify Eq(2.1a)and Eq.(2.1b)to read as
follows:

(M + %@%W —iav v_ , ) (¢+<f)) (wm)) (2.14)
—ig -V M4 YOO J\y ) v ()

- 1 2 M 2

{v2+ |:§V(?) —~ g} —~ [55(7) + M:| }we(?) =0. (2.16)
Consequently, Eq$2.3), (2.4) and (2.6hecome

[VZ— (e £ M)V () + 2 — M? ]y (F) =0, (2.3)

[V2— (e £ M)V () + &2 — M?]yka(7) =0, (2.4)

1

[ﬂv V(@) + E}m(r) (2.6)

respectively. We are unable to make any further general statements beyond the three observations madeabov
(i) the singular matrix structure of the potential, (ii) the unsymmetrical treatment of the positive and negative edergy

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

spectrum, and (iii) the unfavorable equivalence of the Dirac equéi@jto the KG equatior2.4)in the presence 25

of interaction. Therefore, we adapt an alternative investigation strategy based on “demonstration by examp?e”. In

other words, we make several choices of potential functio@y that have well established relativistic extensiong?
(e.g., the Dirac—Coulomb problem for whidh ~ 1/r) and compare their positive energy solutions with those

obtained from Eq(2.3) or, equivalently, Eq(2.4)) for S = +V. We choose not to pursue the case —V since

29

its nonrelativistic limit is the trivial interaction-free mode. This, of course, does not diminish the importancé of
such problems. It only limits its contribution (with the proper physical interpretation) to the relativistic regime 3t

Equation(2.3) for ¥4 and Eq.(2.4) for ykg with S = +V and for a general noncentral potentialr, 6, ¢)
could be written in spherical coordinates as follows:

19 ,9 1 NG d 1 92 > 5
—|(1—- — 22—+ ———| = M)V -M =0, 2.7
{rzar 8r+ [( x)axZ 8x+1—x28¢2 E+ MV +e 4 2.7)

32
33
34
35
36

wherex = cosp andy stands for either) or ¥kg. Consequently, this equation is completely separable féf

potentials of the form

- 1 1
V)=V + - 2 [Ve (x) 12 V¢(¢)] (2.8)

This is so because if we write the total wavefunctionya®, 6, ¢) = r 1R(r)® (0)® (¢), then the wave equa-

tion (2.7)with the potential2.8) gets completely separated in all three coordinates and as follows:
d2
[d7>2 —(s+M)V¢+E¢]d>=O, (2.9a)

d? d Ey
(1-x )dx Zxa—l_xz—@%—M)V@—i—Eg e =0, (2.9b)

38
39
40
0
42
43
44
45
46
47
48
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d’> E
& et M)V, + €%~ M?|R=0, 2.9c) !
dr2  r2 2

whereE4 and E, are the separation constants, which are real and dimensionless. The components of the Ivave-

function are required to satisfy the boundary conditions. Tha (@) = R(c0) =0, @ (¢) = P (¢ +27), @(0) and 4
O (n) are finite. If we specialize to the case whege= 0, then the normalized solution of E@.9a)that satisfies °
the boundary conditions is 6
7

1 .
D, (p) = M meZ=0+142,..., 2.10) 8
m (P N (2.10) .
giving Ey = m?. 10

The solution of Eq(2.9b)for bound states will be spanned By functions that are defined in the compact*

space with coordinate € [—1, +1]. Comparing it to the differential equation of the Jacobi polynom’i&’”) (x) 2

[4], which is also defined in the same space, we could suggest the following form of solution: i

O©B)=A1—x)*1+x)P PP (x), (2.11) 15

where A is the normalization constant. The real dimensionless parametarsd v are such thai > —1 and 10

v > —1. Square integrability and the boundary conditions requiredhatO andg > 0. Substituting(2.11)into
Eqg. (2.9b)and using the differential equation of the Jacobi polynomials we obtain

17
18
19

d B 1+x 20

—v—2a+2 — 20 —28)|— +2x - -1
{[M v +t2B+x(utv ¢ 'B)]dx+ <1—x 1+x>+a((x )1—x 21
1—x Ey (,v) ”
+5(,3—1)1+ —1_x2—(8+m)V9+E9—20¢,B—n(n+u+v+l) P =0. (2.12) o3

24
Requiring that the representation in the solution space, which is spann@ildy be orthogonal dictates that ,.

the x-dependent factors multiplying“"” and %P,f“’”) in Eq. (2.12) must vanish. Thus, the angular potentiabs

function Vg (x) should be of the following form: 27
a—+ bx 28
Vo(x) = 12 (2.13) o

— X

wherea andb are real parameters. Additionally, simple manipulations of (BdL2) with this potential function %

. . 31
give the following results:

32

w=+vm2+ (s +M)a+b), (2.14a)
v =+/m2+ (¢ + M)(a — b). (2.140) ..
=L ﬁ:K, (2.14c) =6
2 2 37
1\% 1 a8

Eg=\n+a+B+z]| —-. (2.14d)
2 4 39

The Aharonov-Bohn{5] and Hartmanr{6] potentials are special cases (@.13) for which b = 0. For pure 4°
Aharonov-Bohm effecly is discrete via its linear dependence on the intege®n the other hand, for the Hart- 4
mann problem the angular potenti@.13) should be supplemented by the radial Coulomb potential. The cd8e
whereb = +a corresponds to the magnetic monopole potential with singularity alongjttexis[7]. The orthog- 43
onality relation of the Jacobi polynomials gives the following expression for the normalization constant that nfdkes

the angular wavefunction®, (6)} an orthonormal set 45
46

Zn+pu+v+1Trn+Hn+pu+v+1) 47
A= ) (2.15)
2utvtl T+ pu+DI(n+v+1) 48
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Eqg. (2.14d)implies that for real representations we can always wrjge= A(A + 1), wherea is a real number, not
necessarily an integer but discrete (i.e., numerable). Additiorialf/evaluated as

xz{”‘”ﬂ’ A>0, (2.16)

—n+a+p)—-1 ri<-L1

However, real representations require that the expressions under the two square rodta. ivaipnd Eq(2.14b)
are non-negative. In other words, the absolute value of the inkegbould be not less than some positive intefger
wherem is the minimum integer that satisfies the following

2 = (e + M)(1b| — a), (2.17)

where we have assumed positive energy, correspondisg=te+ V. Thus, the range of the integer becomes 11
m==m,+(m+1),£m+2),...andm = 0 only if a > |b|. For a given intege in this range and for a given 12
physical parametek, the integem is not arbitrary but is determined by E¢R.16) Finally, we can write the 13
complete orthonormal angular wavefunction as 14

2 1T+ 1T 1 A
Qnm(e,qb):/ n4pu+v+1T0+ DT+ pu+v+ )(1—x)“/z(l—l—x)”/zP,f“’”)(x)e'mq’, (2.18)

Qg 20tV F'm+pu+HIr(n+v+1)

where the dependence encomes also from the parametersandv as given by Eq(2.14a)and Eq.(2.14b)
respectively. 20

In the following section, we solve the radial equation and obtain the energy spectra for several radial potgntial
functions, V.. (r). These will be compared with the spectra of other closely related problems in order to mgke

general conclusions about the validity of the interpretation of the solutions obtainSafetV . 2

24

3. Solutionsof the radial equation and energy spectra for several examples zz

In this section we solve the radial equation, E29c) and obtain the positive energy spectra for the Couloml;;
oscillator and Hartmann potentials. We compare the results obtained in the first two cases with those of the yvell-
known Dirac—-Coulomb and Dirac-oscillator problems that have the same nonrelativistic spectra. However, ifj the
absence of a known exact solution of the relativistic extension of the Hartmann potential, we investigate the rgsults
of this case only under certain conditions. We limit our investigation to the energy spectrum since it is suffigjent
(for the purpose of our study) to reach definitive conclusions.

In the configuration space with real coordinatthe wavefunction for bound states could be expanded ib%an
basis{x,} asd oo f2(e) xx (), where the basis functions could generally be written as

33
34
35

xn(Y) = Ayw, (y) Py (y). (31) Zj

A, is a normalization constang, (y) is a polynomial of degree in y, and the weight function satisfies,(y+) = 35
0, wherey_(y4) is the left (right) boundary of configuration space. We may consider two types of spaces thaj.are

relevant to our problem. One is for whigh are finite and 20

wa () = (4 =9 —y-)F, Py(y) = 2F1(=n,b; c; y). (3.2) i;

Another is semi-infinite, where_ finite, y infinite, and we can write 43

44

wa(Y) = (y =y ) PO P(y) =1Fi(—n; ¢ y). 33)

2F1 is the hypergeometric function and is the confluent hypergeometric function. The parameters, b, ¢ 46
are real withw andg positive. They are related to the physical parameters of the problem and may also depené (for
bound states) on the index An example of the first cag@.2) is the angular wavefunction given in the previouss



© 0O N O g b~ W N P

A A B A B B B A DWW W W W W W WWWNNRNDNDNNDNDNNDNRNIERERR R P P PP PR
© N O 00 R W N R O © © N o a8 ®N P O © O N 0o 005 ® NP O © ® N o 0 A W N B O

50375-9601(05)01472-6/SC0  AID:14910 Vol.eee(eee) [DTD5] P.7 (1-11)
PLA:m3 v 1.46 Prn:15/09/2005; 14:43 p|a14910 by:IS p. 7

A.D. Alhaidari et al. / Physics LetterS A eoe (eeee) ec0e—see 7

section by Eq(2.11)for which y. = £1 and P,(y) are the Jacobi polynomials. On the other hand, the solution
of the radial equation, Eq2.9c), for bound states will be spanned iy functions defined on the positive real2
line with coordinatey € :R™, wherey is proportional to some power of That is, the relevant configuration spaces

is semi-infinite withy_ = 0. Thus, the following ansatz is compatible with this requirement and can be made to
satisfy the boundary conditions 5

6
R(r)=By e ™ 1F1(p:q: y). (3.4)

whereB is the normalization constantf; is the confluent hypergeometric ser[é$, p andg are dimensionless 8
real parameters. Square integrability and the boundary conditions require that the real dimensionless paranfeters
and& be positive. We will consider two cases. One, in whick: pr and in the othely = (or)?, wherep isa 10
positive real parameter of inverse length dimension. Substit¢@rp into Eq.(2.9c)for y = pr, Eg =A(A+1) 1

and using the differential equation of the confluent hypergeometric series we obtain 12
13
2t — d t(t—1)—A(A+1 -2t e+ M &2 — M?
(1—25+ q>—+ =1 5 a+D  potd —V, +E8+——— |1 =0. 35 ™
y Jdy y y P P 15

Requiring orthogonal representation for the bound states dictates thatifygendent factors multiplyingF; and 6

o 4, Fy in Eq. (3.5) must independently vanish. Consequently, the radial potential function should be proportighal
to 1/r. Thatis,V,(r) = Z/r, the Coulomb potential, whelg is the charge coupling parameter which is proport®

tional to the product of the charge number and the fine structure constant. It is worth noting that the radial poténtial
function could also include a term proportionalte? without destroying the solvability of E43.5). However, by 2
a redefinition of the separation constditin Eq.(2.9¢) such a term could easily be absorbed into the centripetdl
potential Ey /2. Now, for bound state§ < 0 and the confluent hypergeometric sefi€s(p; g; y) must terminate 2

which requires thap = —k, wherek =0, 1, 2, .. .. Simple manipulations of E¢3.5) give the following results: 23
24

1

T=n+a+B+1 é:i, q =21, (3.6a) 25
26

k+n+a+p+1)2%— 322
epy = gt atfrl) Ciadil 3.6b)
(k+n+a+p+1)2+ 322 28
29

lBknm“‘jw
=—Z . 3.6¢

p k+n+a+p+1 ( )

The dependence of the energy spectrum on the integepmes from the parametess and g as given by 2
Egs.(2.14) Moreover, it is obvious that the upper bound of this positive energy spectramt{M) is obtained 33
for large values of quanta and/orn. Of course, the negative energy spectrum and its lower bausd{M) is  aa
obtained by considering the case= —V. Now, if this formulation of the relativistic problem is misinterpretecs
then one may presume that the energy speci@Bb) includes that of the relativistic Coulomb problem (where
a = b =0) and that of the relativistic Hartmann problem (wheg 0 andb = 0). Obviously, the spectra of other 37
problems (e.g., the magnetic monopole wheére=- 0 andb = +a) could also be assumed incorrectly to be in=s
cluded, but will not be discussed here. For the Coulomb ease = |m|/2 and the energy spectrufd.6b)is 39

written as 40
(k+0+1)2%—22/4 a

e=M 3.7
T kT er D2y z24 S
wherel =n +|m|=0,1,2,.... This isnot equal to the well-known positive energy spectrum of the relatlwstlg
Dirac—Coulomb problerf8], 45

~1/2 46
£k = M[1+ ( z° ) ] . (3.8) 47

2
k+y/(+1)?% - 22 a8



© 0o N o g b~ W N P

S A B AN BN DN DD DWW WW W W W WWWRNNDNDNDNDNDNDRNDNDNRER R R P P P PR
®© N o O W N P O © ©® N O 00 BF ®N P O © 0 N o0 0 r WNP O O 0 N O b~ w NP o

S0375-9601(05)01472-6/SCO0 AID:14910 Vol.eee(eee) p|a14910 [DTD5] P.8 (1-11)

PLA:m3 v 1.46 Prn:15/09/2005; 14:43 by:IS p. 8
8 A.D. Alhaidari et al. / Physics LetterS A eoe (eeee) eee—see
However, both give the correct nonrelativistic limit (in the case of weak couplingz.&,1 and|E| <« M): 1
2
M Z?
Evy=—r——. 39 3
ke TEY RS (3.9) ;

As for the Hartmann problem, it is well known that taking the parameter limit O gives the Coulomb problem. s

Therefore, we can also conclude that the correct relativistic extension of the Hartmann problem is not as formelated

above[9]. Nevertheless, the non-relativistic limi€(« 1) of the energy spectru(B.6b)for the Hartmann problem, 7

wherea #0,b =0 anda = = 3/m2 +a(e + M), is 8

9

z? _
Epm = (k+n+1+m?+2Ma) >, (3.10) 10
11
which is the correct nonrelativistic spectry10]. 12
Taking y = (pr)? in the radial wavefunctior§3.4) and employing the differential equation of the confluent,
hypergeometric series reduce E2.9c)to the following: 14
2t1—q+1/2\ d 2t2t—-1)—-x(A+1 e+ M 15
124 TTIEIE) D +E2y ==V, 10

dy 4y 4p
1 2 MZ 17
8 —

+p—§&l2t+= )+ ———[1F1=0. (3.11) *®
2 4p2 19

Orthogonal representation for the bound states dictates that the factors muItnﬂnag]d 1F1 must vanish. 2

Thus, the radial potential function should be proportionaf%oThat is, we can writd/, (r) = lMa)ZrZ which is Z
the potential for the 3D isotropic oscillator withbeing the oscillator frequency. Similar to the Coulomb problem
this radial potential could also include a term proportiona13 (i.e., »—2). Such a term could be absorbed, as
well, into the centripetal potentid, /2. For bound states the confluent hypergeometric sefiesnust terminate
requiring thatp = —k, wherek =0, 1, 2, .... Simple manipulations of E¢3.11)give the following results:

24
25
26

1 1 27

2t=n+a+pB+1, S—E, q—2r+§, (3.12a) s
Eknm + M 3 29

(&knm — M) WSTZ(U<2]<+”+0!+,B+E), (312b) 30
1 31
pt= EM{UZ(Eknm + M). (3.12¢c) =2

The relativistic bound states energy spectrum is obtained by solving3EkRb) for e,,,,. For the spherically
symmetric case, whewe= b = 0 anda = 8 = |m|/2, the right-hand side of E¢3.12b)becomesv (2k + ¢ + %).
The resulting formula will be compared to the well-known positive energy spectrum of the Dirac-os¢ilHtor

\/1+4%(k+€+g), L=j+3, (3.13) 38
4wk /M, t=j—3, 39

where j is the total angular momentum, orbital plus spin. It is obvious that the two relativistic spectra do*hot
coincide. Additionally, the lower bound of the energy spectram (+M) is not attainable for the spectru{®.12b)
whereas it is for the spectru@.13) with £ = j — % and k = 0. Nevertheless, the nonrelativistic limit (When4
|E| < M andw <« M) of (3.12b) which describes the oscillator in the presence of the noncentral potgnhtia)
is

ge=M

44

3 45
Ek,,mza)(Zk—i-n—i-a—i-ﬂ—i-é), (3.14) 4
a7

which is the correct spectrufid,12]. 48
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The three examples presented above (the Coulomb, Hartmann, and oscillator) show that the formulationiof the
relativistic problem as depicted in Eq&.1a), (2.1b)Yequivalently, Eqs(2.14d), (2.18)) with § = +V should not 2
be misinterpreted as equivalent to those that have the same nonrelativistic limit. This is compatible with thesview
that although the non-relativistic limit is well-defined and unigue, the relativistic extension is not.

~N o g b

4. Potentialswith unequal magnitudes
8

For the sake of completeness, we study in this section a related problem that has also received equal atention
[13]. It deals with the KG equatiof?.1b)(equivalently, Eq(2.11)) but with an unbalanced potential contributionsto
in which we takeS = nV, wheren is a real parameter such thatt +1. Now, this case does not suffer from thet!
singular potential structure mentioned below Efj1b) Additionally, the Dirac and KG equations give results that2
are equivalenonly under certain physical constraints. Thus, we expect fruitful results. As an illustrative examfle,
we consider spherically symmetric exponential-type potentials leading to the correct formulation of the relativistic
extension of the S-wave Morse probl¢id]. It bears very close resemblance to the Dirac—Morse prof&in 15

The radial component of the KG equati¢th1B) for spherically symmetric potentials, with=7nV andV () = 16

Voe "", reads as follows: 17
18
2
& }( 2 1)Vge %" — (e +nM)Voe " + &> — M?|R(r) =0, (41 *
dr? 4 20

where Vg and p are real potential parameters apds positive. On the other hand, the Dirac-Morse potentigf
[15] is a three-parameter relativistic extension of the S-wave Morse oscillator. The “kinetic balance” relatid in
that problem could be used to eliminate the lower spinor component giving the following second-order radial

differential equatiorj15] for the upper component: 24
25

d2
[ﬁ — (Ao/¢)2e™2" — (28 + §>Aoe—p’ +8%— MZ]R(r) =0, “2)

where{¢, p, Ao} are the physical parameters of the problem such that, for bound gtate§2A0/ p)2. Comparing 2:

this equation with Eq(4.1) shows that the current KG problem is an S-wave Dirac—Morse problety # %Vo, %0
= 3(p/nM) and only for the restricted case wheyé= (p/2M)?> — 1 andp > 2M (i.e., only if > =[1— 4
(2M/p)?1~1). To pursue the solution of the current KG problem, we postulate the following radial wave function

which is compatible with the domain of the wave operdtbi) 33
34
R(r)=AZ"e 51 F1(p: q; 2), 43)
wherez = ¢~ " and, for economy of notation, we used the same symbols as those in the previous section 3&ub-
stituting this in Eq.(4.1) and using the differential equation of the confluent hypergeometric series we obtainsthe

following: 38

2 2 2 %

2t —q+1\d 1(, & -M 2 onc—1 0
1-26+——— | —+ 5|94+ —— -V

{( 5+ z )dz+z2< * p? >+§ 0 4p2 a1

1 e+qM7)" 42

- E[E(Zf—i—l)—p-i-Vo e ]} 1F1=0. 4.4) 4

44

Real solutions of this equation dictates tldf < 0. For bound states we must also have- —n, wheren = 45

0,1,2,.... Moreover, the wavefunction parameters are evaluated as follows 6

1 W 1 47

t:x—n———?en, E=_ (4.58) 4
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g=2r+1  9*=1+(p/V0)? (4.5b)

and the relativistic energy spectrum is derived as

[1+ (Vo/p)z]gn = Vo(X —n— %) + p\/(n + %) (2)( —n— %), (4.6)

wherey = %~/1+ (Vo/p)? andn < 2y — % These results show that the Klein—-Gordon—Morse problem is equiv-
alent to the Dirac—Morse problem if and only if the potential parameters are relat%’d:agaaz[(p/2M)2 —1]. °

o 0~ W N P

10
11
12
13

5. Concluding remarks

In this Letter, we studied the three-dimensional Dirac and Klein—Gordon equations with $ealdrvectorV
potentials such that = £V. This type of coupling attracted a lot of attention in the literature due to the resuft-
ing simplification in the solution of the relativistic problem. The wave equation could always be reduced ]to a
Schrédinger-type second order differential equation. This puts at one’s disposal a variety of well establlshed an-
alytic tools and techniques to be employed in the analysis and solution of the problem. These technlques have
been well developed over the years by many researchers in dealing with the Sturm—Liouville problem and the
Schrddinger equation. However, we showed that the nonrelativistic limit of theScase V results in a trivial 10
non-interacting theory. As for the case= +V few general remarks were given. These include the singular struc-
ture of the potential, the missing negative energy spectrum, and the unexpected close affinity of the Klein— Gordon
equation to the Dirac equation in the presence of interaction. Several illustrative examples=with/ were
considered in order to support our conclusions and give a clear presentation of our study. We considered the more
general situation where the potentials are not only radial but non-central. The relativistic Coulomb, oscnlator4and
Hartmann potentials were considered. We found that the resulting relativistic energy spectrum does not comcmle
with those of well-known relativistic extensions that have the same nonrelativistic limit.

Finally, we looked at the case whefe=nV such that) # +1. This results in uneven contribution of the two
potentials. Moreover, the structure of the interaction is no longer singular. We studied the spherically symmetnc
problem with radial exponential potentials and showed that an acceptable extension of the S-wave Morse przoblem
is obtained. Bound states exist under certain conditions and the relativistic energy spectrum was derived. %

32
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