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Abstract

We study the three-dimensional Dirac and Klein–Gordon equations with scalar and vector potentials of equal ma
as an attempt to give a proper physical interpretation of this class of problems which has recently been accumulating
We consider a large class of these problems in which the potentials are noncentral (angular-dependent) such that the
separate completely in spherical coordinates. The relativistic energy spectra are obtained and shown to differ from
well-known problems that have the same nonrelativistic limit. Consequently, such problems should not be misinterpret
relativistic extension of the given potentials despite the fact that the nonrelativistic limit is the same. The Coulomb, o
and Hartmann potentials are considered. Additionally, we investigate the Klein–Gordon equation with uneven mix of p
leading to the correct relativistic extension. We consider the case of spherically symmetric exponential-type potentials
in the S-wave Klein–Gordon–Morse problem.
 2005 Published by Elsevier B.V.

PACS: 03.65.Ge; 03.65.Pm; 03.65.Ca
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1. Introduction

The success of quantum mechanics in the description of the atomic and sub-micro world is very impres
overwhelming. Supplementing this theory with special relativity created one of the most accurate physical
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in recent history. An example is quantum electrodynamics: the theory that describes the interaction of charg
cles with the electromagnetic radiation at high speeds or strong coupling. The Dirac equation and the Klein–
(KG) equation are the most frequently used wave equations for the description of particle dynamics in r
tic quantum mechanics. The fact that these two equations, for free particles, are constructed using two ob
four-vector linear momentum operatorPµ = ih̄∂µ and the scalar rest massM , allows one to introduce naturally tw
types of potential coupling. One is the gauge-invariant coupling to the four-vector potential{Aµ(t, �r)}3

µ=0 which
is introduced via the minimal substitutionPµ → Pµ − gAµ, whereg is a real coupling parameter. The other, is
additional coupling to the space–time scalar potentialS(t, �r) which is introduced by the substitutionM → M + S.
The term “four-vector” and “scalar” refers to the corresponding unitary irreducible representation of the P
space–time symmetry group (the group of rotations and translations in(3 + 1)-dimensional Minkowski space
time). Gauge invariance of the vector coupling allows for the freedom to fix the gauge (eliminate the nonp
gauge modes) without altering the physical content of the problem. There are many choices of gauge fix
one could impose. The Lorentz gauge,∂µAµ = ∂0A0 + �∇ · �A = ∂φ/ν2∂t + �∇ · �A = 0, and the Coulomb gaug
�∇ · �A = 0, are two of the most commonly used conditions. However, many choose to simplify the solution
problem by taking the space component of the vector potential to vanish (i.e.,�A = 0). If we adapt this later choic
and write the time component of the four-vector potential asgA0 = V (t, �r), then we end up with two independe
potential functions in the Dirac and KG equations. These are the “vector” potentialV and the scalar potentialS.

In the relativistic units,̄h = c = 1, the free Dirac and KG equations are written as(iγ µ∂µ −M)ΨD(t, �r) = 0 and
(∂µ∂µ + M2)ΨKG(t, �r) = 0, respectively. The convention of summing over repeated indices is used. For pa
of spin 1/2, {γ µ} are 4× 4 constant matrices with the following standard representation:

(1.1)γ 0 =
(

I 0
0 −I

)
, �γ =

(
0 �σ

−�σ 0

)
,

whereI is the 2× 2 unit matrix and�σ are the three 2× 2 hermitian Pauli spin matrices. The vector and sc
couplings mentioned above introduce potential interactions by mapping the free Dirac and KG equation
into the following:

(1.2a)

{
γ 0

[
i
∂

∂t
− V (t, �r)

]
+ i �γ · �∇ − M − S(t, �r)

}
ΨD(t, �r) = 0,

(1.2b)

{
−

[
i
∂

∂t
− V (�r)

]2

− �∇2 + [
S(�r) + M

]2
}
ψKG(�r) = 0,

respectively. Recently, interest in the solutions of these two equations for the case whereS(�r) = ±V (�r) has surged
For the most recent contributions, with citations to earlier work, one may consult the papers in[1] and reference
therein.

In this Letter, we set out to present a critical investigation of this case,S = ±V , considering the more gener
situation where the potentials are angular-dependent (noncentral) such that the Dirac and KG equations
pletely separable in spherical coordinates. We target studies that present an improper physical interpretat
solutions of such problems. However, studies that are aimed at the investigation of issues that are relevan
problems such as the pseudo-spin symmetry in nuclear physics[2] and the effect of the breaking of this symme
do not fall within the scope of our work. We will show (by example) that the solutions of such problems d
coincide with those of well-established problems that have the same nonrelativistic limit. The Coulomb,
tor and Hartmann potentials will be studied. This constitutes a (sufficient) proof that although the nonrela
limit is well-defined and unique, the relativistic extension is not. Thus, the physical interpretation of the rela
problem should not be confused with those that may have the same nonrelativistic spectrum or similar s
of the potential functions. The formulation of the problem will be carried out in the following section wh
illuminating solutions for several examples will be obtained in Section3. The KG equation withS = ηV will be
investigated in Section4, whereη is a real parameter such thatη �= ±1. We consider the example of radial exp
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nential potentials and show that in this case the correct relativistic description (the S-wave Klein–Gordon
problem) is obtained as long asη relates to the physical parameters of the problem in a special way and suc
|η| > 1.

2. Formulation of the problem and solution of the angular equations

For time-independent potentials we can write the total wavefunction asΨ (t, �r) = e−iεtψ(�r), whereε is the
relativistic energy. Consequently, the Dirac and KG equations(1.2a) and (1.2b)become, respectively,

(2.1a)

(
M + S(�r) + V (�r) −i �σ · �∇

−i �σ · �∇ −M − S(�r) + V (�r)
)(

ψ+(�r)
ψ−(�r)

)
= ε

(
ψ+(�r)
ψ−(�r)

)
,

(2.1b)
{ �∇2 + [

V (�r) − ε
]2 − [

S(�r) + M
]2}

ψKG(�r) = 0,

whereψ+ (ψ−) is the top (bottom) two-component spinor ofψD. Now, if we takeS = ±V , then the potentia
contribution in the Dirac Hamiltonian will be either

(
2V 0
0 0

)
or

(
0 0
0 2V

)
. It is believed that such a singular potent

structure might result in irregular behavior of the solution. Nevertheless, withS = ±V Eq.(2.1a)gives one spino
component in terms of the other as

(2.2)ψ∓(�r) = 1

ε ± M
(−i �σ · �∇)ψ±(�r),

whereε �= ∓M . This equation is referred to as the “kinetic balance” relation. Sinceε = +M (ε = −M) is an ele-
ment of the positive (negative) energy spectrum of the Dirac Hamiltonian, then this relation with the top (b
sign is not valid for the negative (positive) energy solutions. Substituting from Eq.(2.2) into the Dirac equa
tion (2.1a), with S = ±V , results in the following second order differential equation

(2.3)
[ �∇2 − 2(ε ± M)V (�r) + ε2 − M2]ψ±(�r) = 0,

giving ψ+ (ψ−) as an element of the positive (negative) energy solutions. To obtain the other spinor compon
use the kinetic balance relation(2.2)with the top (bottom) sign. Therefore, the choiceS = +V (S = −V ) dictates
that the solution of Eq.(2.3)does not include the negative (positive) energy states. This observation highligh
second critical property in this kind of problems that has to be considered carefully when presenting the
interpretation. It associates with each choice of potential configuration one sector of the energy spectru
the positive or the negative, but not both. This unsymmetrical treatment of the energy spectrum, where
the spectrum is missing, is known to create problems such as particle–antiparticle interpretation of the re
theory[3]. As for the KG equation(2.1b), we obtain the following, forS = ±V

(2.4)
[ �∇2 − 2(ε ± M)V (�r) + ε2 − M2]ψKG(�r) = 0,

which is identical to Eq.(2.3) for ψ±. Nonetheless, physically this equation describes a scalar particle (s
whereas Eq.(2.3) describes a spinor particle (spin 1/2). However, mathematically this equivalence of the Di
representation to the KG representationin the presence of interaction constitutes a constraint on the physic
interpretation[3]. Moreover, the nonrelativistic limit, which is obtained by takingε − M ∼= E, where|E| � M ,
implies that the negative energy solutions (corresponding toS = −V ) are free fields since under these conditio
Eq.(2.3)and Eq.(2.4) reduce to

(2.5)

(
1

2M
�∇2 + E

)
ψ(�r) = 0,
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whereE is the nonrelativistic energy andψ stands forψ− or ψKG. On the other hand, the positive energy sta
(whereS = +V ) in the nonrelativistic limit are solutions of

(2.6)

[
1

2M
�∇2 − 2V (�r) + E

]
ψ(�r) = 0,

whereψ stands for eitherψ+ or ψKG. This is the Schrödinger equation for the potential 2V . Thus, we conclude
that only the choiceS = +V produces a nontrivial nonrelativistic limit with a potential function 2V , and notV .
Accordingly, it would be natural to scale the potential terms in Eq.(2.1a)and Eq.(2.1b)so that in the nonrelativisti
limit the interaction potential becomesV , not 2V . Therefore, we modify Eq.(2.1a)and Eq.(2.1b) to read as
follows:

(2.1a′)
(

M + V (�r)+S(�r)
2 −i �σ · �∇

−i �σ · �∇ −M + V (�r)−S(�r)
2

)(
ψ+(�r)
ψ−(�r)

)
= ε

(
ψ+(�r)
ψ−(�r)

)
,

(2.1b′)
{

�∇2 +
[

1

2
V (�r) − ε

]2

−
[

1

2
S(�r) + M

]2}
ψKG(�r) = 0.

Consequently, Eqs.(2.3), (2.4) and (2.6)become

(2.3′)
[ �∇2 − (ε ± M)V (�r) + ε2 − M2]ψ±(�r) = 0,

(2.4′)
[ �∇2 − (ε ± M)V (�r) + ε2 − M2]ψKG(�r) = 0,

(2.6′)
[

1

2M
�∇2 − V (�r) + E

]
ψ+(�r) = 0,

respectively. We are unable to make any further general statements beyond the three observations ma
(i) the singular matrix structure of the potential, (ii) the unsymmetrical treatment of the positive and negative
spectrum, and (iii) the unfavorable equivalence of the Dirac equation(2.3)to the KG equation(2.4)in the presence
of interaction. Therefore, we adapt an alternative investigation strategy based on “demonstration by exam
other words, we make several choices of potential functionsV (�r) that have well established relativistic extensio
(e.g., the Dirac–Coulomb problem for whichV ∼ 1/r) and compare their positive energy solutions with th
obtained from Eq.(2.3′) or, equivalently, Eq.(2.4′) for S = +V . We choose not to pursue the caseS = −V since
its nonrelativistic limit is the trivial interaction-free mode. This, of course, does not diminish the importan
such problems. It only limits its contribution (with the proper physical interpretation) to the relativistic regim

Equation(2.3′) for ψ+ and Eq.(2.4′) for ψKG with S = +V and for a general noncentral potentialV (r, θ,φ)

could be written in spherical coordinates as follows:

(2.7)

{
1

r2

∂

∂r
r2 ∂

∂r
+ 1

r2

[(
1− x2) ∂2

∂x2
− 2x

∂

∂x
+ 1

1− x2

∂2

∂φ2

]
− (ε + M)V + ε2 − M2

}
ψ = 0,

wherex = cosθ and ψ stands for eitherψ+ or ψKG. Consequently, this equation is completely separable
potentials of the form

(2.8)V (�r) = Vr(r) + 1

r2

[
Vθ(x) + 1

1− x2
Vφ(φ)

]
.

This is so because if we write the total wavefunction asψ(r, θ,φ) = r−1R(r)Θ(θ)Φ(φ), then the wave equa
tion (2.7)with the potential(2.8)gets completely separated in all three coordinates and as follows:

(2.9a)

[
d2

dφ2
− (ε + M)Vφ + Eφ

]
Φ = 0,

(2.9b)

[(
1− x2) d2

2
− 2x

d − Eφ

2
− (ε + M)Vθ + Eθ

]
Θ = 0,
dx dx 1− x
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(2.9c)

[
d2

dr2
− Eθ

r2
− (ε + M)Vr + ε2 − M2

]
R = 0,

whereEφ andEθ are the separation constants, which are real and dimensionless. The components of th
function are required to satisfy the boundary conditions. That is,R(0) = R(∞) = 0,Φ(φ) = Φ(φ +2π), Θ(0) and
Θ(π) are finite. If we specialize to the case whereVφ = 0, then the normalized solution of Eq.(2.9a)that satisfies
the boundary conditions is

(2.10)Φm(φ) = 1√
2π

eimφ, m ∈ Z = 0,±1,±2, . . . ,

giving Eφ = m2.
The solution of Eq.(2.9b) for bound states will be spanned byL2 functions that are defined in the compa

space with coordinatex ∈ [−1,+1]. Comparing it to the differential equation of the Jacobi polynomialP
(µ,ν)
n (x)

[4], which is also defined in the same space, we could suggest the following form of solution:

(2.11)Θ(θ) = A(1− x)α(1+ x)βP (µ,ν)
n (x),

whereA is the normalization constant. The real dimensionless parametersµ and ν are such thatµ > −1 and
ν > −1. Square integrability and the boundary conditions require thatα > 0 andβ > 0. Substituting(2.11) into
Eq.(2.9b)and using the differential equation of the Jacobi polynomials we obtain{[

µ − ν − 2α + 2β + x(µ + ν − 2α − 2β)
] d

dx
+ 2x

(
α

1− x
− β

1+ x

)
+ α(α − 1)

1+ x

1− x

(2.12)+ β(β − 1)
1− x

1+ x
− Eφ

1− x2
− (ε + m)Vθ + Eθ − 2αβ − n(n + µ + ν + 1)

}
P (µ,ν)

n = 0.

Requiring that the representation in the solution space, which is spanned by(2.11), be orthogonal dictates th
the x-dependent factors multiplyingP (µ,ν)

n and d
dx

P
(µ,ν)
n in Eq. (2.12)must vanish. Thus, the angular potent

functionVθ(x) should be of the following form:

(2.13)Vθ(x) = a + bx

1− x2
,

wherea andb are real parameters. Additionally, simple manipulations of Eq.(2.12)with this potential function
give the following results:

(2.14a)µ =
√

m2 + (ε + M)(a + b),

(2.14b)ν =
√

m2 + (ε + M)(a − b),

(2.14c)α = µ

2
, β = ν

2
,

(2.14d)Eθ =
(

n + α + β + 1

2

)2

− 1

4
.

The Aharonov–Bohm[5] and Hartmann[6] potentials are special cases of(2.13) for which b = 0. For pure
Aharonov–Bohm effect,a is discrete via its linear dependence on the integerm. On the other hand, for the Har
mann problem the angular potential(2.13) should be supplemented by the radial Coulomb potential. The
whereb = ±a corresponds to the magnetic monopole potential with singularity along the±z axis[7]. The orthog-
onality relation of the Jacobi polynomials gives the following expression for the normalization constant that
the angular wavefunctions{Θn(θ)} an orthonormal set

(2.15)A =
√

2n + µ + ν + 1

2µ+ν+1

�(n + 1)�(n + µ + ν + 1)

�(n + µ + 1)�(n + ν + 1)
.
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Eq.(2.14d)implies that for real representations we can always writeEθ = λ(λ + 1), whereλ is a real number, no
necessarily an integer but discrete (i.e., numerable). Additionally,λ is evaluated as

(2.16)λ =
{

n + α + β, λ > 0,

−(n + α + β) − 1, λ < −1.

However, real representations require that the expressions under the two square roots in Eq.(2.14a)and Eq.(2.14b)
are non-negative. In other words, the absolute value of the integerm should be not less than some positive integem̂,
wherem̂ is the minimum integer that satisfies the following

(2.17)m̂2 � (ε + M)
(|b| − a

)
,

where we have assumed positive energy, corresponding toS = +V . Thus, the range of the integerm becomes
m = ±m̂,±(m̂ + 1),±(m̂ + 2), . . . andm̂ = 0 only if a � |b|. For a given integerm in this range and for a give
physical parameterλ, the integern is not arbitrary but is determined by Eq.(2.16). Finally, we can write the
complete orthonormal angular wavefunction as

(2.18)Ωnm(θ,φ) =
√

2n + µ + ν + 1

4π2µ+ν

�(n + 1)�(n + µ + ν + 1)

�(n + µ + 1)�(n + ν + 1)
(1− x)µ/2(1+ x)ν/2P (µ,ν)

n (x)eimφ,

where the dependence onm comes also from the parametersµ andν as given by Eq.(2.14a)and Eq.(2.14b),
respectively.

In the following section, we solve the radial equation and obtain the energy spectra for several radial p
functions,Vr(r). These will be compared with the spectra of other closely related problems in order to
general conclusions about the validity of the interpretation of the solutions obtained forS = ±V .

3. Solutions of the radial equation and energy spectra for several examples

In this section we solve the radial equation, Eq.(2.9c), and obtain the positive energy spectra for the Coulo
oscillator and Hartmann potentials. We compare the results obtained in the first two cases with those of t
known Dirac–Coulomb and Dirac-oscillator problems that have the same nonrelativistic spectra. Howeve
absence of a known exact solution of the relativistic extension of the Hartmann potential, we investigate th
of this case only under certain conditions. We limit our investigation to the energy spectrum since it is su
(for the purpose of our study) to reach definitive conclusions.

In the configuration space with real coordinatey the wavefunction for bound states could be expanded in aL2

basis{χn} as
∑∞

n=0 fn(ε)χn(y), where the basis functions could generally be written as

(3.1)χn(y) = Anwn(y)Pn(y).

An is a normalization constant,Pn(y) is a polynomial of degreen in y, and the weight function satisfieswn(y±) =
0, wherey−(y+) is the left (right) boundary of configuration space. We may consider two types of spaces t
relevant to our problem. One is for whichy± are finite and

(3.2)wn(y) = (y+ − y)α(y − y−)β, Pn(y) = 2F1(−n,b; c;y).

Another is semi-infinite, wherey− finite, y+ infinite, and we can write

(3.3)wn(y) = (y − y−)αe−β(y−y−), Pn(y) = 1F1(−n; c;y).

2F1 is the hypergeometric function and1F1 is the confluent hypergeometric function. The parametersα, β, b, c

are real withα andβ positive. They are related to the physical parameters of the problem and may also depe
bound states) on the indexn. An example of the first case(3.2) is the angular wavefunction given in the previo



ARTICLE IN PRESS
S0375-9601(05)01472-6/SCO AID:14910 Vol.•••(•••) [DTD5] P.7 (1-11)
PLA:m3 v 1.46 Prn:15/09/2005; 14:43 pla14910 by:IS p. 7

A.D. Alhaidari et al. / Physics Letters A ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

tion
al
ce
de to

s
meters

rtional
or-
otential

etal

ed
en
r

in-

stic
U
N

C
O

R
R

E
C

T
E

D
 P

R
O

O
F

section by Eq.(2.11) for which y± = ±1 andPn(y) are the Jacobi polynomials. On the other hand, the solu
of the radial equation, Eq.(2.9c), for bound states will be spanned byL2 functions defined on the positive re
line with coordinatey ∈ R+, wherey is proportional to some power ofr . That is, the relevant configuration spa
is semi-infinite withy− = 0. Thus, the following ansatz is compatible with this requirement and can be ma
satisfy the boundary conditions

(3.4)R(r) = Byτ e−ξy
1F1(p;q;y),

whereB is the normalization constant,1F1 is the confluent hypergeometric series[4], p andq are dimensionles
real parameters. Square integrability and the boundary conditions require that the real dimensionless paraτ

andξ be positive. We will consider two cases. One, in whichy = ρr and in the othery = (ρr)2, whereρ is a
positive real parameter of inverse length dimension. Substituting(3.4) into Eq.(2.9c)for y = ρr , Eθ = λ(λ + 1)

and using the differential equation of the confluent hypergeometric series we obtain

(3.5)

[(
1− 2ξ + 2τ − q

y

)
d

dy
+ τ(τ − 1) − λ(λ + 1)

y2
+ p − 2τξ

y
− ε + M

ρ2
Vr + ξ2 + ε2 − M2

ρ2

]
1F1 = 0.

Requiring orthogonal representation for the bound states dictates that they-dependent factors multiplying1F1 and
d
dy 1F1 in Eq. (3.5) must independently vanish. Consequently, the radial potential function should be propo
to 1/r . That is,Vr(r) = Z/r , the Coulomb potential, whereZ is the charge coupling parameter which is prop
tional to the product of the charge number and the fine structure constant. It is worth noting that the radial p
function could also include a term proportional tor−2 without destroying the solvability of Eq.(3.5). However, by
a redefinition of the separation constantEθ in Eq. (2.9c), such a term could easily be absorbed into the centrip
potentialEθ/r2. Now, for bound statesZ < 0 and the confluent hypergeometric series1F1(p;q;y) must terminate
which requires thatp = −k, wherek = 0,1,2, . . . . Simple manipulations of Eq.(3.5)give the following results:

(3.6a)τ = n + α + β + 1, ξ = 1

2
, q = 2τ,

(3.6b)εknm = M
(k + n + α + β + 1)2 − 1

4Z2

(k + n + α + β + 1)2 + 1
4Z2

,

(3.6c)ρ = −Z εknm + M

k + n + α + β + 1
.

The dependence of the energy spectrum on the integerm comes from the parametersα and β as given by
Eqs.(2.14). Moreover, it is obvious that the upper bound of this positive energy spectrum (ε = +M) is obtained
for large values of quantak and/orn. Of course, the negative energy spectrum and its lower bound (ε = −M) is
obtained by considering the caseS = −V . Now, if this formulation of the relativistic problem is misinterpret
then one may presume that the energy spectrum(3.6b) includes that of the relativistic Coulomb problem (wh
a = b = 0) and that of the relativistic Hartmann problem (whena �= 0 andb = 0). Obviously, the spectra of othe
problems (e.g., the magnetic monopole whereZ = 0 andb = ±a) could also be assumed incorrectly to be
cluded, but will not be discussed here. For the Coulomb case,α = β = |m|/2 and the energy spectrum(3.6b) is
written as

(3.7)εk� = M
(k + � + 1)2 −Z2/4

(k + � + 1)2 +Z2/4
,

where� = n + |m| = 0,1,2, . . . . This isnot equal to the well-known positive energy spectrum of the relativi
Dirac–Coulomb problem[8],

(3.8)εk� = M

[
1+ Z2(

k + √
(� + 1)2 −Z2

)2

]−1/2

.
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However, both give the correct nonrelativistic limit (in the case of weak coupling, i.e.,Z � 1 and|E| � M):

(3.9)Ek� = − MZ2

2(k + � + 1)2
.

As for the Hartmann problem, it is well known that taking the parameter limita → 0 gives the Coulomb problem
Therefore, we can also conclude that the correct relativistic extension of the Hartmann problem is not as for
above[9]. Nevertheless, the non-relativistic limit (Z � 1) of the energy spectrum(3.6b)for the Hartmann problem
wherea �= 0, b = 0 andα = β = 1

2

√
m2 + a(ε + M), is

(3.10)Eknm = −MZ2

2

(
k + n + 1+

√
m2 + 2Ma

)−2
,

which is the correct nonrelativistic spectrum[6,10].
Taking y = (ρr)2 in the radial wavefunction(3.4) and employing the differential equation of the conflu

hypergeometric series reduce Eq.(2.9c)to the following:[(
1− 2ξ + 2τ − q + 1/2

y

)
y

d

dy
+ 2τ(2τ − 1) − λ(λ + 1)

4y
+ ξ2y − ε + M

4ρ2
Vr

(3.11)+ p − ξ

(
2τ + 1

2

)
+ ε2 − M2

4ρ2

]
1F1 = 0.

Orthogonal representation for the bound states dictates that the factors multiplying1F1 and d
dy 1F1 must vanish.

Thus, the radial potential function should be proportional tor2. That is, we can writeVr(r) = 1
2Mω2r2, which is

the potential for the 3D isotropic oscillator withω being the oscillator frequency. Similar to the Coulomb proble
this radial potential could also include a term proportional toy−1 (i.e., r−2). Such a term could be absorbed,
well, into the centripetal potentialEθ/r2. For bound states the confluent hypergeometric series1F1 must terminate
requiring thatp = −k, wherek = 0,1,2, . . . . Simple manipulations of Eq.(3.11)give the following results:

(3.12a)2τ = n + α + β + 1, ξ = 1

2
, q = 2τ + 1

2
,

(3.12b)(εknm − M)

√
εknm + M

2M
= ω

(
2k + n + α + β + 3

2

)
,

(3.12c)ρ4 = 1

2
Mω2(εknm + M).

The relativistic bound states energy spectrum is obtained by solving Eq.(3.12b) for εknm. For the spherically
symmetric case, wherea = b = 0 andα = β = |m|/2, the right-hand side of Eq.(3.12b)becomesω(2k + � + 3

2).
The resulting formula will be compared to the well-known positive energy spectrum of the Dirac-oscillator[11],

(3.13)εk� = M




√
1+ 4 ω

M

(
k + � + 3

2

)
, � = j + 1

2,
√

1+ 4ωk/M, � = j − 1
2,

wherej is the total angular momentum, orbital plus spin. It is obvious that the two relativistic spectra d
coincide. Additionally, the lower bound of the energy spectrum (ε = +M) is not attainable for the spectrum(3.12b)
whereas it is for the spectrum(3.13) with � = j − 1

2 and k = 0. Nevertheless, the nonrelativistic limit (whe
|E| � M andω � M) of (3.12b), which describes the oscillator in the presence of the noncentral potential(2.13),
is

(3.14)Eknm = ω

(
2k + n + α + β + 3

2

)
,

which is the correct spectrum[7,12].
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The three examples presented above (the Coulomb, Hartmann, and oscillator) show that the formulati
relativistic problem as depicted in Eqs.(2.1a), (2.1b)(equivalently, Eqs.(2.1a′), (2.1b′)) with S = +V should not
be misinterpreted as equivalent to those that have the same nonrelativistic limit. This is compatible with t
that although the non-relativistic limit is well-defined and unique, the relativistic extension is not.

4. Potentials with unequal magnitudes

For the sake of completeness, we study in this section a related problem that has also received equal
[13]. It deals with the KG equation(2.1b)(equivalently, Eq.(2.1b′)) but with an unbalanced potential contributio
in which we takeS = ηV , whereη is a real parameter such thatη �= ±1. Now, this case does not suffer from t
singular potential structure mentioned below Eq.(2.1b). Additionally, the Dirac and KG equations give results t
are equivalentonly under certain physical constraints. Thus, we expect fruitful results. As an illustrative exa
we consider spherically symmetric exponential-type potentials leading to the correct formulation of the rela
extension of the S-wave Morse problem[14]. It bears very close resemblance to the Dirac–Morse problem[15].

The radial component of the KG equation(2.1b′) for spherically symmetric potentials, withS = ηV andV (�r) =
V0e

−ρr , reads as follows:

(4.1)

[
d2

dr2
− 1

4

(
η2 − 1

)
V 2

0 e−2ρr − (ε + ηM)V0e
−ρr + ε2 − M2

]
R(r) = 0,

whereV0 and ρ are real potential parameters andρ is positive. On the other hand, the Dirac–Morse poten
[15] is a three-parameter relativistic extension of the S-wave Morse oscillator. The “kinetic balance” rela
that problem could be used to eliminate the lower spinor component giving the following second-orde
differential equation[15] for the upper component:

(4.2)

[
d2

dr2
− (A0/ζ )2e−2ρr −

(
2ε + ρ

ζ

)
A0e

−ρr + ε2 − M2
]
R(r) = 0,

where{ζ,ρ,A0} are the physical parameters of the problem such that, for bound states,ζ 2 = (2A0/ρ)2. Comparing
this equation with Eq.(4.1) shows that the current KG problem is an S-wave Dirac–Morse problem ifA0 = 1

2V0,
ζ = 1

2(ρ/ηM) and only for the restricted case whereζ 2 = (ρ/2M)2 − 1 andρ > 2M (i.e., only if η2 = [1 −
(2M/ρ)2]−1). To pursue the solution of the current KG problem, we postulate the following radial wave fun
which is compatible with the domain of the wave operator(4.1)

(4.3)R(r) = Azτ e−ξz
1F1(p;q; z),

wherez = e−ρr and, for economy of notation, we used the same symbols as those in the previous sectio
stituting this in Eq.(4.1) and using the differential equation of the confluent hypergeometric series we obta
following:{(

1− 2ξ + 2τ − q + 1

z

)
d

dz
+ 1

z2

(
τ2 + ε2 − M2

ρ2

)
+ ξ2 − V 2

0
η2 − 1

4ρ2

(4.4)− 1

z

[
ξ(2τ + 1) − p + V0

ε + ηM

ρ2

]}+
1F1 = 0.

Real solutions of this equation dictates thatηV0 < 0. For bound states we must also havep = −n, wheren =
0,1,2, . . . . Moreover, the wavefunction parameters are evaluated as follows

(4.5a)τ = χ − n − 1 − V0
2
εn, ξ = 1

,

2 ρ 2
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(4.5b)q = 2τ + 1, η2 = 1+ (ρ/V0)
2,

and the relativistic energy spectrum is derived as

(4.6)
[
1+ (V0/ρ)2]εn = V0

(
χ − n − 1

2

)
± ρ

√(
n + 1

2

)(
2χ − n − 1

2

)
,

whereχ = M
ρ

√
1+ (V0/ρ)2 andn � 2χ − 1

2. These results show that the Klein–Gordon–Morse problem is eq

alent to the Dirac–Morse problem if and only if the potential parameters are related asV 2
0 = ρ2[(ρ/2M)2 − 1].

5. Concluding remarks

In this Letter, we studied the three-dimensional Dirac and Klein–Gordon equations with scalarS and vectorV
potentials such thatS = ±V . This type of coupling attracted a lot of attention in the literature due to the re
ing simplification in the solution of the relativistic problem. The wave equation could always be reduce
Schrödinger-type second order differential equation. This puts at one’s disposal a variety of well establis
alytic tools and techniques to be employed in the analysis and solution of the problem. These techniqu
been well developed over the years by many researchers in dealing with the Sturm–Liouville problem
Schrödinger equation. However, we showed that the nonrelativistic limit of the caseS = −V results in a trivial
non-interacting theory. As for the caseS = +V few general remarks were given. These include the singular s
ture of the potential, the missing negative energy spectrum, and the unexpected close affinity of the Klein–
equation to the Dirac equation in the presence of interaction. Several illustrative examples withS = +V were
considered in order to support our conclusions and give a clear presentation of our study. We considered
general situation where the potentials are not only radial but non-central. The relativistic Coulomb, oscilla
Hartmann potentials were considered. We found that the resulting relativistic energy spectrum does not
with those of well-known relativistic extensions that have the same nonrelativistic limit.

Finally, we looked at the case whereS = ηV such thatη �= ±1. This results in uneven contribution of the tw
potentials. Moreover, the structure of the interaction is no longer singular. We studied the spherically sym
problem with radial exponential potentials and showed that an acceptable extension of the S-wave Morse
is obtained. Bound states exist under certain conditions and the relativistic energy spectrum was derived.
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