Maria and Maria a for and a man a grant call the state of the enter the second of the second of the second of the second that the second of seco and the state of t . The manufactured allowed allowed by the consequences of the second of the consequence of the consequence of t The first of the property of the consequence c le esta esta esta en la partira de la mante de la managenta de la manda en de la company com La company de d ## **Problems on Entropy** Q1 The change in entropy for melting 6.0 kg of a solid which melts at 27 °C is: [The latent heat of fusion of the solid is 2.5×10^4 J/kg $1 \text{ (Ans: } +5.0 \times 10^2$ J/K) $$\Delta S = \frac{mL}{T} = \frac{6 \times 2.5 \times 10^4}{27 + 273} = 500 \text{ T/K}$$ Q2. An ice cube of mass 400 g at temperature of 0 °C melts to water at 0 °C. The process takes place very slowly, so it is reversible. What is the change in entropy of the ice when it has all melted. (Ans: 488 J/K) $$\Delta S = \frac{mL}{T} = \frac{0.4 \times 333 \times 10^3}{243} = 488 \text{ J/K}$$ Q3. Liquid water having a mass of 50 grams was initially at 0 °C. Heat was added to the water so that its entropy increases by 94.0 J/K, what is the final temperature of the water?(Ans: 428 K) 1 temperature of the water?(Ans: 428 K) $$\Delta S = mC \ln \left(\frac{T_f}{T_i} \right) \Rightarrow T_f = T_i \quad e^{\frac{\Delta S}{mc}} = 273 \quad e^{\frac{94}{0.05 \times 4190}} = 428 \quad K$$ Q#4 A 5.00-kg block of copper is at 296 K. If it is heated that its entropy increases by 1.07 kJ/K, what is the final temperature? [The specific heat of copper is 386 J/(kg*K)] [A1 515 K.] Q5. Calculate the change in entropy of 1.0 kg of ice at 0.0 °C when its temperature is increased to 20.0 °C [$L_{\text{fusion-ice}} = 333 \text{ kJ/kg}$; $c_{\text{water}} = 4190 \text{ J/kg}$. K. (Ans: 1.5 × 10³ J/K) $$\Delta S = \Delta S_1 + \Delta S_2 = \frac{mL}{T} + mC_w \ln \frac{T}{T_c} = \frac{1 \times 333 \times 10^3}{273} + 1 \times 4190 \times \ln \left(\frac{273 + 20}{273}\right)$$ Q#6. One mole of an ideal gas expands reversibly and isothermally at temperature T = 27° C until its volume is doubled. The change of entropy of this gas for this process is: (Ans: 5.8 J/K) $\vee_{c} = 2 \vee_{c}$ Q7: An ideal monatomic gas is confined to a cylinder by a piston. The piston is slowly pushed in so that the gas temperature remains at 27 degree C. During the compression, 750 J of work is done on the gas. The change in the entropy of the gas is: (Ans: -3.0 J/K). $$W = nRT \ln\left(\frac{V_{f}}{V_{i}}\right)^{2} \text{ note that } W \text{ is -re} \left(\text{done on } g_{M}\right)$$ $$\Delta S = nR \ln\left(\frac{V_{f}}{V_{i}}\right)^{2} \Delta S = \frac{W}{T}$$