King Fahd University of Petroleum and Minerals, Physics Department

PHYS 101 REC Fall 2018 (181)

SEC \# 25, Quiz \# 5
Name:
ID \#

Please show all steps and substitutions.

The only force acting on a 2.0 kg body as it moves along a positive x axis has an x component $\mathrm{F}_{x}=6 x \mathrm{~N}$, with x in meters. The velocity at $x=3.0 \mathrm{~m}$ is $8.0 \mathrm{~m} / \mathrm{s}$. What is the velocity of the body at $x=4.0 \mathrm{~m}$?

$$
\begin{gathered}
K_{f}=K_{i}+W \\
\frac{1}{2} m v_{f}^{2}=K_{i}+W \Rightarrow v_{f}=\sqrt{\frac{2\left(K_{i}+W\right)}{m}} \\
W=\int_{x_{i}}^{x_{f}} F_{x} d x=6 \int_{3.0}^{4.0} x d x=6\left[\frac{1}{2} x^{2}\right]_{3.0}^{4.0}=21 \mathrm{~J} . \\
K_{i}=\frac{1}{2} m v_{i}^{2}=\frac{1}{2}(2.0)(8.0)^{2}=64 \mathrm{~J} . \\
v_{f}=\sqrt{\frac{2(64 \mathrm{~J}+21 \mathrm{~J})}{2.0 \mathrm{~kg}}}=9.22 \mathrm{~m} / \mathrm{s} .
\end{gathered}
$$

King Fahd University of Petroleum and Minerals, Physics Department

PHYS 101 REC Fall 2018 (181)
SEC \# 26, Quiz \# 5
Name:
ID \#
Please show all steps and substitutions.
In the figure, a block of ice slides down a frictionless ramp at angle 60° while an ice worker pulls on the block (via a rope) with a force that has a magnitude of 100 N and is directed up the ramp. As the block slides through distance $d=0.25 \mathrm{~m}$ along the ramp, its kinetic energy increases by 75 J . How much greater would its kinetic energy have been if the rope had not been attached to the block?

$$
\begin{gathered}
\Delta K=W_{\text {net }}=W_{g}+W_{F_{r}} \\
W_{F_{r}}=\vec{F}_{r} \cdot \vec{d}=F d \cos \phi=(100 \mathrm{~N})(0.25 \mathrm{~m}) \cos -180^{\circ}=-25 \mathrm{~J} . \\
W_{g}=\Delta K-W_{F_{r}}=75 \mathrm{~J}-(-25 \mathrm{~J})=100 \mathrm{~J} .
\end{gathered}
$$

Without the rope, the work would be purely gravitational. Thus,

$$
\Delta K_{2}=W_{g}=100 \mathrm{~J}
$$

King Fahd University of Petroleum and Minerals, Physics Department

PHYS 101 REC Fall 2018 (181)
SEC \# 27, Quiz \# 5
Name:
ID \#

Please show all steps and substitutions.
A 12.0 N force with a fixed orientation does work on a particle as the particle moves through the three-dimensional displacement $\vec{d}=(2.00 \hat{\imath}-4.00 \hat{\jmath}+3.00 \hat{k}) \mathrm{m}$. What is the angle between the force and the displacement if the change in the particle's kinetic energy is (a) +30.0 J and (b) -30.0 J ?

$$
\begin{gathered}
\Delta K=W \\
W=\vec{F} \cdot \vec{d}=F d \cos \phi \\
\phi=\cos ^{-1} \frac{W}{F d}=\cos ^{-1} \frac{\Delta K}{F d} \\
d=\sqrt{2.00^{2}+(-4.00)^{2}+(3.00)^{2}}=5.385 \mathrm{~m} .
\end{gathered}
$$

a)

$$
\phi=\cos ^{-1} \frac{\Delta K}{F d}=\cos ^{-1} \frac{30.0 \mathrm{~J}}{(12.0 \mathrm{~N})(5.385 \mathrm{~N})}=62.3^{\circ}
$$

b)

$$
\phi=\cos ^{-1} \frac{\Delta K}{F d}=\cos ^{-1} \frac{-30.0 \mathrm{~J}}{(12.0 \mathrm{~N})(5.385 \mathrm{~N})}=118^{\circ}
$$

