King Fahd University of Petroleum and Minerals, Physics Department

$$
\text { PHYS } 101 \text { REC Fall } 2018 \text { (181) }
$$

SEC \# 25, Quiz \# 4
Name:
ID \#

Please show all steps and substitutions.

An elevator cab that weighs 27.8 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$ and (b) decreasing at a rate of $1.22 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{gathered}
m=\frac{W}{g}=\frac{27.8 \mathrm{kN}}{9.81 \mathrm{~m} \mathrm{~s}^{2}}=2.83 \times 10^{3} \mathrm{~kg} \\
T-m g=m a_{y} \\
T=m\left(g+a_{y}\right) .
\end{gathered}
$$

a)

$$
T=m\left(g+a_{y}\right)=2.83 \times 10^{3}(9.81+1.22)=3.13 \times 10^{4} \mathrm{~N}=31.3 \mathrm{kN}
$$

b)

$$
T=m\left(g+a_{y}\right)=2.83 \times 10^{3}(9.81-1.22)=2.43 \times 10^{4} \mathrm{~N}=24.3 \mathrm{kN}
$$

King Fahd University of Petroleum and Minerals, Physics Department

$$
\text { PHYS } 101 \text { REC Fall } 2018 \text { (181) }
$$

SEC \# 26, Quiz \# 4

Name:
ID \#

Please show all steps and substitutions.

The figure shows two blocks connected by a cord (of negligible mass) that passes over a frictionless pulley (also of negligible mass). The arrangement is known as Atwood's machine. One block has mass $\mathrm{m}_{1}=1.30 \mathrm{~kg}$; the other has mass $\mathrm{m}_{2}=2.80 \mathrm{~kg}$. What is the magnitude of the blocks' acceleration?

The heaver mass (m_{2}) accelerates downwards while the lighter mass m_{1} accelerated upwards.

For m_{1},

$$
T-m_{1} g=m_{1} a
$$

For m_{2},

$$
T-m_{2} g=m_{2} a_{2 y}=-m_{2} a,
$$

or

$$
T-m_{2} g=-m_{2} a
$$

Solving for a gives

$$
a=\left(\frac{m_{2}-m_{1}}{m_{2}+m_{1}}\right) g=\left(\frac{2.80-1.30}{2.80+1.30}\right)(9.81)=3.59 \mathrm{~m} / \mathrm{s}^{2} .
$$

King Fahd University of Petroleum and Minerals, Physics Department

PHYS 101 REC Fall 2018 (181)

SEC \# 27, Quiz \# 4
Name:
ID \#
Please show all steps and substitutions.
A block of mass $m_{1}=3.70 \mathrm{~kg}$ on a frictionless plane inclined at angle $\theta=30.0^{\circ}$ is connected by a cord over a massless, frictionless pulley to a second block of mass $m_{2}=2.30 \mathrm{~kg}$. What is the magnitude of the acceleration of the two-block system?

Figure 5-52 Problem 57.

Let us assume that m_{2} accelerates downwards while the lighter mass m_{1} accelerated upwards.

For m_{1},

$$
T-m_{1} g \sin \theta=m_{1} a_{x},
$$

or

$$
T-m_{1} g \sin \theta=m_{1} a .
$$

For m_{2},

$$
T-m_{2} g=m_{2} a_{y}
$$

or

$$
T-m_{2} g=-m_{2} a .
$$

Solving for a gives

$$
a=\frac{m_{2}-m_{1} \sin \theta}{m_{1}+m_{2}} g=\left(\frac{2.30-(3.70) \sin 30.0}{3.70+2.30}\right)(9.81)=0.735 \mathrm{~m} / \mathrm{s}^{2} .
$$

