Chapter S

Center of Mass and Linear Momentum




1. The Center of Mass

* The center of mass (com) of a system is the point that moves as though (1)

all of the system’s mass were concentrated there and (2) all external forces
were applied there.

* We discuss here how to find the center of mass of a system of a few
particle, and then we consider a system of many particles (a solid body).

Later in the chapter, we discuss how the center of mass of a system moves
when external forces act on the system.




1. The Center of Mass

e System of Particles:

Consider the configuration shown in the figure. )

We define the position of the center of mass
(com) of this two particle system as — Xy —
m,
Xcom = m, +m, d. _m B Mo
COIT11
When m, =0, x;om = 0, when my = m,, Xcom [ d -
=d/2,andwhenm; =0, x.om = d.

Xcom lies between x.om = 0 and x.o;m = d.




1. The Center of Mass

e System of Particles:

Consider now the more situation shown in the
figure. The position of the center of mass is now
defined as

mix;{ +myx, mMmx{+ myxs,

X
com mq —+ mo M

When x; =0, then x, =d and the previous
situation is recovered.

Despite the shift of the coordinate system, the
center of mass is still the same distance form each
particle.
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1. The Center of Mass

e System of Particle:

For a system of n particles along the x axis,
mixqy + myx, + mgxz + -+ myx,
M

xcom -

1 n
= — m;x; .
MZL:l Lt

If the particles are distributed in three dimensions, the center of mass is
identified by three coordinates:

1 n 1 n 1 n
Xcom — _z m;Xx;, Ycom = _2 m;yi, Zcom — _z m;z.




1. The Center of Mass

e System of Particle:

The position of the center of mass can be written as a position vector:

AN

Tecom = Xcom ! T Yeom ) T Zcom k.

The three scalar equations in the previous slide can be combined into a

single equation:
rcom — § m TL )

where 7 = x; 1+ y; ] + z; k.




1. The Center of Mass

e Solid Bodies:

Solid objects contain so many particles, that we can best treat it as a
continuous distribution of matter. The particles then become differential
mass dm, and the sums become integrals:

1 1 1
xcomzﬁfxdm, ycomzﬁfydm, Zcom:Mdem-

M here is the mass of the object.

These integrals are usually difficult to evaluate, unless an object has
uniform density p.




1. The Center of Mass

e Solid Bodies:
We then can write that

B dm M

dv v’

where dV is the volume occupied by a mass dm, and V is the total volume
of the object.

p

The three integrals above can be rewritten for a uniform density object as

1 1 1
xC°m=VfXdV' ycom=vjyd1/, zcom=VszV.




1. The Center of Mass

e Solid Bodies:

The determination of the center of mass becomes significantly easier when
the object has a point, a line, or a plane of symmetry. The center of mass
then lies at the point, on that /ine, or in that p/ane.

For example, the center of mass of a uniform density sphere is the center
of the sphere (the point of symmetry). The center of mass of a uniform
density cone lies on the axis of the cone (the line of symmetry). The center
of mass of a banana lies somewhere in the plane of symmetry (the plane
which splits the banana into two identical parts).




1. The Center of Mass

Example 1: The figure shows a uniform metal
plate P of radius 2R from which a disk of radius
R has been removed. Using the xy coordinate
system shown, locate the center of mass X.om, p
of the remaining plate.

The center of mass of the removed disk S and
the remaining plate P is the same as the center
of mass of the whole disk C.

Center of mass of a disk is located at its center.
Therefore, Xcom ¢ = 0 and xcom s = —R.

10

2R

comp

Plate P




1. The Center of Mass

We then write

mecom,S + mecom,P

Xcom,C =
’ mS + mp

or
. MpXcom,p
mg + mp
Solving for x.om p We get

—R mg

mg
Xcom,p — R m
P

11

)

2R

comp

Plate P




1. The Center of Mass

The masses of the removed disk and
remaining plate are related to m, by

R2 mC
s = 2Rz ¢ ZBT'
mp = mC—mS:ch.
We then find -
C
mg 4
Xcom,P = RE: R§_ 3
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1. The Center of Mass

Example 2: Three particles of masses m; = 1.2 kg, m, y N B
= 2.5 kg, and m; = 3.4 kg form an equilateral triangle - This is ihe position
of edge length a = 140 cm. Where is the center of mass vector fgom for the

: 5 com (it points from
of this system: the origin to the com).

100

1 23 myx; + myx, + mayxs
Xcom — = mixX; = a a
M i=1 mq + mo + ms

504/ A
~ (1.2kg)(0) + (2.5 kg)(140 cm) + (3.4 kg)(70 cm) / i
N 1.2kg + 2.5kg + 3.4 kg Jrrainan man)

0
fl‘\ my 50 Ycom 100 150

= 83 cm.
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1. The Center of Mass

_ 123 oy Y1 T Moy, + Msys
yCOHl M =1 lyl m1 + mz + m3

~ (1.2kg)(0) + (2.5 kg)(0 cm) + (3.4 kg)(120 cm)

1.2 kg + 2.5kg + 3.4 kg

= 58 cm.

14

150

100

OQ\ my

—
ICOITI

This is the position
vector reom for the
com (it points from
the origin to the com).
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1. The Center of Mass

\. CHECKPOINT 1

The figure shows a uniform square plate from which four identical squares at the cor-
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it
after the removal of (b) square 1; (¢) squares 1 and 2: (d) squares 1 and 3; (e) squares 1,
2,and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal-
culation, of course).

(a) At the origin. 3
(b) In the 4t quadrant.
(c) On the y axis, blow the origin. 1 9
(d) At the origin. )
(e) In this 37 quadrant.
(f) At the origin.
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2. Newton’s 2" Law for a System of Particles

* We now discuss how external forces can move the center of mass of a system.

e Consider a system of n particles. The motion of the center of mass of the system
is governed by

= -
Fret = Macom,
where:

1. ﬁnet is the net force of all external forces acting on the system. Internal forces
are not included.

2. M is the total mass of the system. We assume that the system is closed; no
mass enters or leaves the system.

3. dgom is the acceleration of the center of mass of the system. The equation
tells nothing about the motions or individual particles.




2. Newton’s 2" Law for a System of Particles

* |In components,
Fnet,x — Macom,x» Fnet,y — Macom,y» Fnet,z — Macom,z-

e Consider a system of two billiard baIIs where one ball is moving toward the

other which is at rest. Because Fnet =0, deom = 0. The velocity of the
center of mass does not change. The center of mass must continue moving
forward before and after the collision, with the same speed and direction.

-

* F oot = Md.,m, applies to solid bodies. It tells us that for a baseball bat in
free fall, d.om = g. The center of mass of the bat moves as if the bat were

a single particle.




2. Newton’s 2" Law for a System of Particles




2. Newton’s 2" Law for a System of Particles

* Another interesting example is the o | "
fireworks rocket. The center of e internal forces of the

mass of a fireworks rocket follows  €XPlosion cannot change
the same trajectory that the rocket the path of the com.
would have followed if it had not
exploded.
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2. Newton’s 2" Law for a System of Particles

Example 3: The three particles in the figure are
initially at rest. Each experiences an external force 4 ; Fy
due to bodies outside the three-particle system. The 4.0 kg | \ 45°

directions are indicated, and the magnitudes are F; 1. 8.0 kg
=6.0N, F, =12N, and F; = 14 N. What is the |

acceleration of the center of mass of the system, T —— 5t
and in what direction does it move? q

%

9 [y
Fnet — Macom; B 3

or
Foet Fy +F, +F;

i =
com M M




2. Newton’s 2"? Law for a System of Particles

Fl,x+F2,x+F3,x

Acom,x = M
_ —6.0N+12(cos45° ) N+ 14 N
B 16 kg
m
= 1.035—2.
B Fiy+Fy+E3,
Acom,y = M
- 0 +12(sin45°) N+ 0
a 16 kg

m
= 0.530 .
S
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_Fl,x+F2,x+F3,x
acom,x - M

- —6.0N+12 (cos45°) N + 14 N
a 16 kg

m
= 1.038—2.

. B Fiy+Fy+F3,y
com,y M

0 +12(sin45°) N+ 0
B 16 kg

m
=0.530—.
S




2. Newton’s 2" Law for a System of Particles

Y
2 2
Qoo = w (1 035—2) +(0 5305—2)
m
_, 0530
0 =tan " —— = 27°.
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3. Linear Momentum

* |n this section we return to the case of a single particle, in order to define
two new quantities.

* The linear momentum (or momentum) of a particle of mass m and velocity
VU is a vector quantity p, defined as

p = muv.

« p and v have the same direction. The S| unit for momentum is kilogram-
meter per second (kg - m/s).

* Newton expressed his second law of motion in terms of momentum:

The time rate of momentum change of a particle is equal to the net force
acting on the particle and is in the direction of that force.




3. Linear Momentum

* In equation form, Newton's second law reads

S dp
Fret = _p
dt
= dp d v d(v -
* Note that F,,,; = d—lz = (sz) = m% = ma.

* In words, the net force ﬁnet on a particle changes the linear momentum p
of the particle. Conversely, the linear momentum can be changes only by a
net force. If there is no net force, p cannot change.




3. Linear Momentum

‘-. CHECKPOINT 3

The figure gives the magnitude p of the linear momentum versus time f for a particle mov-
ing along an axis. A force directed along the axis acts on the particle. (a) Rank the four re-
gions indicated according to the magnitude of the force. greatest first. (b) In which region
is the particle slowing?

2

4
I

(a) 1, 3,2 &4tie.
(b) 3.
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4. Linear Momentum of a System of Particles

* Consider a system of n particles, each with its own mass, velocity and
linear momentum. The particles may interact with each other, and external

forces may act on them. The total linear momentum P of the system is

-

P =p1+P+ -+ P

= MmyV; + MyU, + -+ m, Uy,

which can be written as

-

P =M.y

* The linear momentum of a system of particles is equal to the product of
the total mass of the system and velocity of the center of mass.




4. Linear Momentum of a System of Particles

 Differentiating the last relation with respect to time t yields

dpP dv .
E:M ;;m = Mda;om,
or equivalently .
5 dP
Fret = E

where ﬁnet is the net external force acting on the system.

* In words, the net external force ﬁnet acting on a system of particle changes

the linear momentum P of the system. Conversely, the linear momentum
of a system can be changes only by a net external force. If there is no net

external force, P cannot change.




5. Collison and Impulse

* To change the momentum p of a particle-like object a net force ﬁnet is
required.

* We could arrange for the object to collide with another. In such a collision,
the external force on the object is brief, large in magnitude, and suddenly
changes the body’s momentum.

* We start studying collisions by a simple collision in which a moving particle-
like object (a projectile) collides with some other body (a target.)




5. Collison and Impulse

e Single Collision:

Let the projectile be a ball and the target be a bat. During the
brief collision, the ball experiences a force that is great
enough to slow, stop, or even reverse its motion. The force

ﬁ(t) varies during the collision and changes the ball’s linear

momentum F. By Newton’s second law (F = dg/dt), the
change dp in the ball’'s momentum in time interval dt is

dp = F(t)dt.

The net change in the ball’'s momentum due to the collision,
from a time t; to a time ty is

Ly ty |
J dp = J F(t)dt.
t t

i

i

- At




5. Collison and Impulse

* Single Collision:

Let the left hand side of the last equation gives us the
change in momentum pr — p; = Ap. The right hand side,
which is a measure of both the magnitude and the
duration of the collision, is called the impulse f of the
collision:

. (Y,
] = F(t)dt.
ti
Therefore, the change in an object’s momentum is equal
to the impulse on the object:

-

AB =]

- At




5. Collison and Impulse

e Single Collision:

Ap = fis a vector equation. Its x component reads F
Apy = Jx»
or
tf
Prx — Pix = f Fx(t)dt-
i |

|
- > l; {f
If we have a function for F(t), we_can evaluate | by b Al .
direct integration. If we have a plot F versus time t, we

can find | by evaluating the area between the curve and  he impulse in the collision
the t axis Is equal to the area under

the curve.




5. Collison and Impulse

* Single Collision:

In many situations, we don’t know how the force varies
with time but we know the average magnitude Fy,, of
the force and the duration At (= ty — t;) of the collision.
We then can write the magnitude of the impulse as

] = Fayght.

We could have focused on the bat instead of the ball. By
Newton’s third law, the impulse on the bat has the same
magnitude but the opposite direction as the impulse on
the ball.

"r':n_::

The average force gives
the same area under the
curve.

5
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5. Collison and Impulse

\. CHECKPOINT 4

A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he landed
on bare ground, the stopping time would have been 10 times shorter and the collision
lethal. Does the presence of the snow increase, decrease, or leave unchanged the values

of (a) the paratrooper’s change in momentum, (b) the impulse stopping the paratrooper,

and (c) the force stopping the paratrooper?

(a) No change. In either case Ap,, = pry, — Piy = 0 —mvy,,.
(b) No change. In either case, J,, = Ap,,.

(c) Decrease. because Fy,; = J,,/At and At is 10 times longer.
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5. Collison and Impulse

Series of Collisions:

Here we consider the average force F,,; on a
body when it undergoes a series of identical,
repeated collision.

Consider a stream of projectile bodies, each with
mass m and linear momentum p = mv along
the x axis. Let n be the number of the projectiles
that collide in a time interval At. The total
change in linear momentum for n particles is
nlAp, where Ap is the change in the momentum
of a single particle due to a collision.

—
Vv
ﬁ}

00000090

Projectiles

]

Target




5. Collison and Impulse

Series of Collisions:

The resulting impulse f on the target during the
time interval At along the x axis is
] = —nlAp.
The average force F,,, acting on the target
during At is
E J " A " A
= —=——Ap = ——mAv.
WIx At At At
Aﬁt is the rate at which the projectile collides with

a target.

—
1V

] >

00000090
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5. Collison and Impulse

Series of Collisions:

If the projectiles stop after the collision, then Av = vy —v; =0 —v = —v. If
instead, the projectiles bounce backward with the same speed v, then Av
=Vf—V;=—V—V=—2V.
In time Atf, an amount of mass Am = nm collides with the target. The
average force F,,,, » becomes

Am

Favg,x - — A_t Av.

Am . : :
A—T is the rate at which mass collides with the target.




5. Collison and Impulse

"n'CH ECKPOINT 5

The figure shows an overhead view of a ball bounc- y
ing from a vertical wall without any change 1n its
speed. Consider the change Ap in the ball’s linear
momentum. (a) Is Ap, positive, negative, or zero? ;
(b) Is Ap, positive, negative, or zero? (c) What is the 10
direction of Ap?

(a) Zero.
(b) Positive.

(c) Positive y direction.
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5. Collison and Impulse

Example 4: The figure is an overhead view of the y

path taken by a race car driver as his car collides with '

the racetrack wall. Just before the collision, he is Wall
traveling at speed v; = 70 m/s along a straight line

at 30° from the wall. Just after the collision, he is
traveling at speed vy = 50 m/s along a straight line
at 10° from the wall. His mass m is 80 kg.

|
30°

(a) What is the impulse f on the driver due to the
collision?




5. Collison and Impulse

f= Pr—Di = m(ﬁf - 771')-
Along the x axis:
Jx= m(vfx - vix)
= (80 kg)[ (50 m/s) cos(—10°) — (70 m/s) cos 30°]

m
= —-910 kg - —.
S
Along the y axis:

Jy=m(vsy — viy)
= (80 kg)[(50 m/s) sin(—10°) — (70 m/s) sin 30°]

m

39




5. Collison and Impulse

The impulse is then
S m
] =(—9101—35001) kg-?,

and ] = 3600 kg - ?, at 105° below the x axis.

(b) The collision lasts for 14 ms. What is the
magnitude of the average force on the driver during
the collision?

] 3600kg-— 5
Y9 At 14 ms 2:6 X 10°N

Fq

40




6. Conservation of Linear Momentum

* When the net external force Fnet (and impulse ]) acting on a closed, isolated
system is zero, then dP/dt = 0. We therefore write

-

P = constant.

* If no net external force acts on a system of particles, the total liner momentum 2
of the system cannot change.

* This result is called the law of conservation of linear momentum. If can be also
written as

-

P; = Ps.

In words:

(total linear momentum)

(total linear momentum)
at some intial time ¢;

at some final time tr




6. Conservation of Linear Momentum

e Each of the two vector equations in the previous slide is equivalent to three
equations corresponding to the conservation of linear momentum in three
mutually perpendicular directions (e.g. xyz).

* Depending on the forces acting on the system, linear momentum might be
conserved in some of these three directions.

If the net external force on a closed system is zero along an axis, then the
component of the linear momentum of the system along that axis cannot
change.




6. Conservation of Linear Momentum

e Consider the example of tossing a stone. The gravitational force on the
stone changes its linear momentum in the vertical direction. The other two
horizontal components of the stone’s linear momentum do not change.

* Note that internal forces can change the linear momentum of a portion of
a system, but they cannot change the total momentum of the system.




6. Conservation of Linear Momentum

\'CH ECKPOINT 6

An 1nitially stationary device lying on a frictionless floor explodes into two pieces,
which then slide across the floor. One piece slides in the positive direction of an x axis.
(a) What 1s the sum of the momenta of the two pieces after the explosion? (b) Can the
second piece move at an angle to the x axis? (¢) What is the direction of the momentum

of the second piece?

- -

(a) Zero. F,,.; = 0 and hence P = constant (= 0).
(b) No, because the momentum of the first piece is purely in the x axis.

(c) The negative x axis, by conservation of momentum.
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6. Conservation of Linear Momentum

Example 5: The figure shows a space hauler and cargo

—

module, of total mass M, traveling along an x axis in deep — = Vi
space. They have an initial velocity of magnitude 2100 km _~—
/h. With a small explosion, the hauler ejects the cargo — Hauler
module, of mass 0.20 M. The module then travels at Cargo module
1700 km/h along the x axis. What then is the velocity of X
the hauler?
The system is closed and isolated: _"_f;g - VH

= _—v

Pf — Pi'

The initial momentum before the explosion is

= X

Pi = MUi.
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6. Conservation of Linear Momentum

After the explosion, the total momentum of the hauler

—

and the cargo module is - - Vi

= _——

Pf = MyVy + My Vy. \Hauler
Equating the momenta before and after the collision we Cargo module
write X

Mv; = myvy + myvy.

—= —>

Ym Vi

Solving for vy, and substituting we get that —D> - = —
Mv; — myvy
Uy = 0.20M 0.80M
mpy
B M (2100 km/h) — 0.20M (1700 km/h) B km .

= 2200—.
0.80M 00 h
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6. Conservation of Linear Momentum

Example 6: A firecracker placed inside a coconut of mass ‘?ﬁ‘*"< R
M, initially at rest on a frictionless floor, blows the |
coconut into three pieces that slide across the floor. An
overhead view is shown in the figure. Piece C, with mass N
0.30M, has final speed v¢c = 5.0 m/s. ly /

(a) What is the speed of piece B, with mass 0.20M? E
The system is closed and isolated and therefore ﬁf = ﬁi. N /i}(;
The coconut is initially at rest and hence P; = 0. ’H\ /<
o A
A HIU'D
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6. Conservation of Linear Momentum

Along the y axis:
Pry = Pray + Prey + Prcy
= Pr, sin 180° + Psp sin(—50°) + P¢¢ sin 80°
= MpVsp Sin(—50°) + mcvr sin80° = 0.
Solving for v¢g and substituting we get
m\ | o
mevyesing0°  (03M) (5.0 ?) sin 80

Vfp = _mB sin(=50°) ~ (0.2M) sin(—50°)

9.6 m/s.
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6. Conservation of Linear Momentum

(b) What is the speed of piece A?
Along the x axis:

Pfx :Pfo+Pfo+Pfo
= Pr, c0s 180° + Prg cos(—50°) + Pg¢ cos 80°
= —MyVsa + MpVsp c0s(50°) + Mg cos 80°
= 0.
Solving for v¢p and substituting we get
mpVsp €c0S 50° + mcvge cos 80°

va = m,
(0.2M) (9.6 cos 50° + (0.3M) (5.0 ) cos 80° "
_ S S _
= =3.0—.
0.5M S
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7. Momentum and Kinetic Energy in Collisions

* In the remaining of this chapter, we focus on all colliding particles in an
isolated closed system, instead of focusing on a single particle.

* We discussed a rule about the system: The total momentum of the system
is conserved.

* This rule is very powerful because it enables us to determine the results of
a collision without knowing the details of the collision.

* We will be interested in the total kinetic energy of a system of two colliding
particles. If that total energy happens to be unchanged by the collision,
then we say that the kinetic energy of the system is conserved. Such a
collision is called an elastic collision.




7. Momentum and Kinetic Energy in Collisions

* In everyday collisions, some of the kinetic energy is always transferred to
other forms of energy. Thus the kinetic energy of the system is not
conserved and the collision is called an inelastic collision.

* |n some situations, the loss in kinetic energy of a system due to a collision
is ‘small’ and we can approximate the collision to be elastic.

* The greatest loss in kinetic energy occurs if the colliding bodies stick
together, in which case the collision is called a completely inelastic
collision.




8. Inelastic Collisions in One Dimension

* One-Dimensional Inelastic Collision:

Consider the two-body system shown in the
figure. The velocities before the collision
(subscript i) and after the collision (subscript f)
are indicated. The system is closed and isolated.
Therefore,

-

Pi — f
or DP1i + D2i = Dif + Daf
Using p = mv, we can write this relation as

MUy + MyVUy = MV + MUy,

Body 1

Before >

After _[>f /




8. Inelastic Collisions in One Dimension

* One-Dimensional Completely Inelastic Collision:

Consider the situation shown in the figure. After Vi,
the collision, the two particles stick and move Before =P Vo; =0
together with velocity V. We therefore write

iy Mg

Yrotectile AT
m1v1l — (ml + mZ)V) II{HLLIIIL Tcllhf._[_

m o
or V=—=—v. After —>
mq+tm, X
When the second particle is moving too, V my + mg
becomes

V= MyVyi + MyUy;
m;+m,




8. Inelastic Collisions in One Dimension

e VVelocity of the Center of Mass:

In a closed, isolated system, the velocity U.,m Of the center of mass cannot
be changed by a collision. We can write a relation between v.,, and the

total momentum P of the two-body system. We know that
P = Mﬁcom = (my + mz)ﬁcom»

which gives that

P Dty
m1+m2 m1+m2'

-
vCOI'I‘l




8. Inelastic Collisions in One Dimension

"-.CH ECKPOINT 7

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What 1s their

final momentum if their initial momenta are, respectively, (a) 10 kg-m/s and 0; (b) 10
kg-m/sand 4 kg-m/s:(c) 10 kg-m/s and —4 kg - m/s?

(a) 10 kg -
(b) 14 kg -
(c) 6 kg - ?

SETIE
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8. Inelastic Collisions in One Dimension

Example 6: The ballistic pendulum was used to
measure the speeds of bullets before electronic timing
devices were developed. The version shown in the
figure consists of a large block of wood of mass M
= 5.4 kg, hanging from two long cords. A bullet of mass
m = 9.5 gis fired into the block, coming quickly to rest.
The block-bullet then swing upward, their center of
mass rising a vertical distance h = 6.3 cm before the
pendulum comes momentarily to rest at the end of its
arc. What is the speed of the bullet just prior to the
collision?

m

A8

T
i
LA
e A o o o S M e S o T B i B e M S A i O
v
"




8. Inelastic Collisions in One Dimension

We relate the speed V of the bullet-block just after the

completely inelastic collision, to the initial bullet’s

speed v by
mv =(m+ M)V,
or p ="y
m

We can also relate the rise h of the bullet-block to its
speed I/ just after the collision, by

1
(m+M)gh=§(m+M)V2, . M

P i e bl il

....................
e e S T e

w B
or V=,2gh. S
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8. Inelastic Collisions in One Dimension

The bullet’s speed v becomes

m+M
v=— J2gh
~ 9.5x107%kg+ 5.4 kg
B 9.5 x 10~3 kg

m
= 630—.
S

J/2(9.8m/s2)(0.063 m)

m = ey Bt

T o e mmmmmmscase-sT o wmmETToC

.
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9. Elastic Collisions in One Dimension

* Although everyday collisions are inelastic, we still can approximate some of
them as being elastic. We can approximate that the total kinetic energy of
the colliding bodies is conserved:

(total Kinetic energy) _ (total Kinetic energy)
before the collisions after the collisions /

* This does not mean that the kinetic energy of each colliding body cannot
change. In an elastic collision, the kinetic energy of each colliding body may
change, but the total kinetic energy of the system does not change.




9. Elastic Collisions in One Dimension

e Stationary Target:

—

Consider the situation shown in the figure. Before v,
Assuming that this two-body system is closed P ez Y X
and isolated, the net linear momentum of the my o

i Projectile Target
SyStem IS Conserved: ~

MyV1; = MqV1f + MyVy¢. After —_  —

The total kinetic energy of the system is

conserved:
1 2 1 2 1 2
Emlvu = §m1771f + EmZUZf'




9. Elastic Collisions in One Dimension

e Stationary Target:

If we know the two masses and v4;, we can write the final velocities in
terms of these three quantities as

my —m, 2m1

Vi = V1i Vor = V1i-
f ’ f m1 + mz

Note that v,r is always positive. v, is positive when m; > m,; the
projectile moves forward. v, is negative when m; < m,; the projectile
rebounds.

Let us consider a few special cases:




9. Elastic Collisions in One Dimension

1. Equal masses: If m; = m,,

V1 = 0and vy = vy;.

The projectile stops completely, transferring all of its kinetic energy to
the target.

2. A massive target: If m, > my,

q 2my

Vir = —Vq; and Uy = —Vyq;.

1f 11 2f m, 11

The projectile bounces back with essentially the same initial speed. The
target moves forward at a low speed.




9. Elastic Collisions in One Dimension

3. A massive projectile: If my > m,,

U1y = vy; and vyp = 2vy;.

The projectile keeps on going with essentially the same speed. The target
moves forward at twice the projectile’s speed.




9. Elastic Collisions in One Dimension

* Moving Target:

—

Now we examine the situation in which both .. ¥,

bodies are initially moving, The conservation of
linear momentum and kinetic energy are m

written, respectively, as

_ After
MqVq; + MyVy = MUy + MUy,

and
. 2 o 1 2 1 2 o 1 2
Emlvli + EmZUZi = §m1771f + EmZUZf'




9. Elastic Collisions in One Dimension

* Moving Target:

We then solve for the final velocities to get

mq; — ms 2m,
Vi = Vi T Vi
my; +m, my +m,
. 2Zmy my, — My
sz — V1i + Uyi-

my +m, my +m,




9. Elastic Collisions in One Dimension

"-'CH ECKPOINT 8

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen-
tum of the projectile is 6 kg - m/s and the final linear momentum of the projectile is (a) 2
kg-m/s and (b) —2 kg-m/s? (c) What is the final kinetic energy of the target if the ni-
tial and final kinetic energies of the projectile are, respectively,5 J and 2 J?

(a) 4 <g ) m/S' Before ;)15 R
] _{} Vo, = 0
(b) 8 kg - m/s. Q X
m Moy
(c) 3 Projectile  Target
After ;;f }Ef
(J Y
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9. Elastic Collisions in One Dimension

Example 7: Two metal spheres, suspended by
vertical cords, initially just touch, as shown in
the figure. Sphere 1, with mass m; =30 g, is
pulled to the left to height h; = 8.0 cm, and
then released from rest. After swinging down,
it undergoes an elastic collision with sphere 2,
whose mass m, = 75 g. What is the velocity
v, of sphere 1 just after the collision?

First, we need to find the speed of sphere 1
just before it collides with sphere 2. We have

that

1 2
Emlvli =mygh,.
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9. Elastic Collisions in One Dimension

We find that

v1; =+/2(9.8m/s2)(0.080 m) = 1.25 m/s.

The final velocity of sphere 1 just after the
elastic collision is given by

. mp—my |
vlf - ml + mz vll hy \ o
= (1.25m/s)
30 g + 75 g my; Mo
m
= —0.54 —.

S
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10. Collisions in Two Dimensions

When a collision is not head-on, the bodies do not end up travelling along
their initial axis. The conservation of linear momentum imposes that

D1; + D2i = D1 + Doy
If the collision is elastic then
Kli + Kzi — Klf + Kzf




10. Collisions in Two Dimensions

Consider the glancing collision shown in the figure
( v,; =0 ). Conservation of momentum for

components along the x axis and y axis read,
respectively,

M1V = MyV;yr COS O + Myv,r COS O,

)

0 = myv;sin@; + myv,,sin,. S
The expression for the conservation of kinetic energy
becomes

1 1 1

2 _ _ 2 4 2
Emlvli = Zmlvlf + Zmzvzf.




10. Collisions in Two Dimensions

These three equations contain 7 unknowns; 2
masses; 3 velocities; and 2 angles. If we have 4 of
these variables we can solve for the remaining three.

no

my Vi




10. Collisions in Two Dimensions

\. CHECKPOINT ©

In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg-m/s, a final x
component of momentum of 4 kg-m/s, and a final y component of momentum of —3
kg - m/s. For the target, what then are (a) the final x component of momentum and (b)
the final y component of momentum?

P1i = D1r + Day. Y
(@) P2fx = P1ix — P1fx = 6 kg-m/s —4kg-m/s =2kg-m/s.
(b) P2ry = P1iy —P1sy = Okg-m/s — (—3kg-m/s) = 3kg- m/s. | Ao

—>
my Vi <01
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