
Chapter 9
Center of Mass and Linear Momentum
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1. The Center of Mass

• The center of mass (com) of a system is the point that moves as though (1)
all of the system’s mass were concentrated there and (2) all external forces
were applied there.

• We discuss here how to find the center of mass of a system of a few
particle, and then we consider a system of many particles (a solid body).
Later in the chapter, we discuss how the center of mass of a system moves
when external forces act on the system.
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1. The Center of Mass

• System of Particles:

Consider the configuration shown in the figure.
We define the position of the center of mass
(com) of this two particle system as

𝑥com =
𝑚2

𝑚1 +𝑚2
𝑑.

When 𝑚2 = 0, 𝑥com = 0, when 𝑚1 = 𝑚2, 𝑥com
= 𝑑/2, and when 𝑚1 = 0, 𝑥com = 𝑑.

𝑥com lies between 𝑥com = 0 and 𝑥com = 𝑑.
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1. The Center of Mass

• System of Particles:

Consider now the more situation shown in the
figure. The position of the center of mass is now
defined as

𝑥com =
𝑚1𝑥1 +𝑚2𝑥2
𝑚1 +𝑚2

=
𝑚1𝑥1 +𝑚2𝑥2

𝑀
.

When 𝑥1 = 0 , then 𝑥2 = 𝑑 and the previous
situation is recovered.

Despite the shift of the coordinate system, the
center of mass is still the same distance form each
particle.
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1. The Center of Mass

• System of Particle:

For a system of 𝑛 particles along the 𝑥 axis,

𝑥com =
𝑚1𝑥1 +𝑚2𝑥2 +𝑚3𝑥3 +⋯+𝑚𝑛𝑥𝑛

𝑀

=
1

𝑀


𝑖=1

𝑛

𝑚𝑖𝑥𝑖 .

If the particles are distributed in three dimensions, the center of mass is
identified by three coordinates:

𝑥com =
1

𝑀


𝑖=1

𝑛

𝑚𝑖𝑥𝑖 , 𝑦com =
1

𝑀


𝑖=1

𝑛

𝑚𝑖𝑦𝑖 , 𝑧com =
1

𝑀


𝑖=1

𝑛

𝑚𝑖𝑧𝑖 .
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1. The Center of Mass

• System of Particle:

The position of the center of mass can be written as a position vector:

Ԧ𝑟com = 𝑥com Ƹi + 𝑦com Ƹj + 𝑧com k.

The three scalar equations in the previous slide can be combined into a
single equation:

Ԧ𝑟com =
1

𝑀


𝑖=1

𝑛

𝑚𝑖 Ԧ𝑟𝑖 ,

where Ԧ𝑟i = 𝑥i Ƹi + 𝑦i Ƹj + 𝑧i k.
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1. The Center of Mass

• Solid Bodies:

Solid objects contain so many particles, that we can best treat it as a
continuous distribution of matter. The particles then become differential
mass 𝑑𝑚, and the sums become integrals:

𝑥com =
1

𝑀
න𝑥 𝑑𝑚 , 𝑦com =

1

𝑀
න𝑦 𝑑𝑚 , 𝑧com =

1

𝑀
න𝑧 𝑑𝑚 .

𝑀 here is the mass of the object.

These integrals are usually difficult to evaluate, unless an object has
uniform density 𝜌.
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1. The Center of Mass

• Solid Bodies:

We then can write that

𝜌 =
𝑑𝑚

𝑑𝑉
=
𝑀

𝑉
,

where 𝑑𝑉 is the volume occupied by a mass 𝑑𝑚, and 𝑉 is the total volume
of the object.

The three integrals above can be rewritten for a uniform density object as

𝑥com =
1

𝑉
න𝑥 𝑑𝑉 , 𝑦com =

1

𝑉
න𝑦 𝑑𝑉 , 𝑧com =

1

𝑉
න𝑧 𝑑𝑉 .
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1. The Center of Mass

• Solid Bodies:

The determination of the center of mass becomes significantly easier when
the object has a point, a line, or a plane of symmetry. The center of mass
then lies at the point, on that line, or in that plane.

For example, the center of mass of a uniform density sphere is the center
of the sphere (the point of symmetry). The center of mass of a uniform
density cone lies on the axis of the cone (the line of symmetry). The center
of mass of a banana lies somewhere in the plane of symmetry (the plane
which splits the banana into two identical parts).
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1. The Center of Mass

Example 1: The figure shows a uniform metal
plate 𝑃 of radius 2𝑅 from which a disk of radius
𝑅 has been removed. Using the 𝑥𝑦 coordinate
system shown, locate the center of mass 𝑥𝑐𝑜𝑚,𝑃
of the remaining plate.

The center of mass of the removed disk 𝑆 and
the remaining plate 𝑃 is the same as the center
of mass of the whole disk 𝐶.

Center of mass of a disk is located at its center.
Therefore, 𝑥com,𝐶 = 0 and 𝑥com,𝑆 = −𝑅.
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1. The Center of Mass

We then write

𝑥com,𝐶 =
𝑚𝑆𝑥com,𝑆 +𝑚𝑃𝑥com,𝑃

𝑚𝑆 +𝑚𝑃
,

or

0 =
𝑚𝑃𝑥com,𝑃 −𝑅 𝑚𝑆

𝑚𝑆 +𝑚𝑃
.

Solving for 𝑥com,𝑃 we get

𝑥com,𝑃 = 𝑅
𝑚𝑆

𝑚𝑃
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1. The Center of Mass

The masses of the removed disk and
remaining plate are related to 𝑚𝐶 by

𝑚𝑆 =
𝑅2

2𝑅 2
𝑚𝐶=

𝑚𝐶

4
,

𝑚𝑃 = 𝑚𝐶−𝑚𝑆=
3

4
𝑚𝐶 .

We then find

𝑥com,𝑃 = 𝑅
𝑚𝑆

𝑚𝑃
= 𝑅

𝑚𝐶
4

3
4
𝑚𝐶

=
𝑅

3
.
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1. The Center of Mass

Example 2: Three particles of masses 𝑚1 = 1.2 kg, 𝑚2
= 2.5 kg, and 𝑚3 = 3.4 kg form an equilateral triangle
of edge length 𝑎 = 140 cm. Where is the center of mass
of this system?

𝑥com =
1

𝑀


𝑖=1

3

𝑚𝑖𝑥𝑖 =
𝑚1𝑥1 +𝑚2𝑥2 +𝑚3𝑥3

𝑚1 +𝑚2 +𝑚3

=
1.2 kg 0 + 2.5 kg 140 cm + 3.4 kg 70 cm

1.2 kg + 2.5 kg + 3.4 kg

= 83 cm.
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1. The Center of Mass

𝑦com =
1

𝑀


𝑖=1

3

𝑚𝑖𝑦𝑖 =
𝑚1𝑦1 +𝑚2𝑦2 +𝑚3𝑦3

𝑚1 +𝑚2 +𝑚3

=
1.2 kg 0 + 2.5 kg 0 cm + 3.4 kg 120 cm

1.2 kg + 2.5 kg + 3.4 kg

= 58 cm.
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1. The Center of Mass

(a) At the origin.

(b) In the 4th quadrant.

(c) On the 𝑦 axis, blow the origin.

(d) At the origin.

(e) In this 3rd quadrant.

(f) At the origin.
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2. Newton’s 2nd Law for a System of Particles

• We now discuss how external forces can move the center of mass of a system.

• Consider a system of 𝑛 particles. The motion of the center of mass of the system
is governed by

Ԧ𝐹net = 𝑀 Ԧ𝑎com,

where:

1. Ԧ𝐹net is the net force of all external forces acting on the system. Internal forces
are not included.

2. 𝑀 is the total mass of the system. We assume that the system is closed; no
mass enters or leaves the system.

3. Ԧ𝑎com is the acceleration of the center of mass of the system. The equation
tells nothing about the motions or individual particles.

16



2. Newton’s 2nd Law for a System of Particles

• In components,

𝐹net,𝑥 = 𝑀𝑎com,𝑥 , 𝐹net,𝑦 = 𝑀𝑎com,𝑦, 𝐹net,𝑧 = 𝑀𝑎com,𝑧.

• Consider a system of two billiard balls, where one ball is moving toward the
other which is at rest. Because Ԧ𝐹net = 0, Ԧ𝑎com = 0. The velocity of the
center of mass does not change. The center of mass must continue moving
forward before and after the collision, with the same speed and direction.

• Ԧ𝐹net = 𝑀 Ԧ𝑎com, applies to solid bodies. It tells us that for a baseball bat in
free fall, Ԧ𝑎com = Ԧ𝑔. The center of mass of the bat moves as if the bat were
a single particle.
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2. Newton’s 2nd Law for a System of Particles
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2. Newton’s 2nd Law for a System of Particles

• Another interesting example is the
fireworks rocket. The center of
mass of a fireworks rocket follows
the same trajectory that the rocket
would have followed if it had not
exploded.
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2. Newton’s 2nd Law for a System of Particles

Example 3: The three particles in the figure are
initially at rest. Each experiences an external force
due to bodies outside the three-particle system. The
directions are indicated, and the magnitudes are 𝐹1
= 6.0 N, 𝐹2 = 12 N, and 𝐹3 = 14 N. What is the
acceleration of the center of mass of the system,
and in what direction does it move?

Ԧ𝐹net = 𝑀 Ԧ𝑎com,

or

Ԧ𝑎com =
Ԧ𝐹net
𝑀

=
Ԧ𝐹1 + Ԧ𝐹2 + Ԧ𝐹3

𝑀
.
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2. Newton’s 2nd Law for a System of Particles

𝑎com,𝑥 =
𝐹1,𝑥 + 𝐹2,𝑥 + 𝐹3,𝑥

𝑀

=
−6.0 N + 12 cos 45° N + 14 N

16 kg

= 1.03
𝑚

𝑠2
.

𝑎com,𝑦 =
𝐹1,𝑦 + 𝐹2,𝑦 + 𝐹3,𝑦

𝑀

=
0 + 12 sin 45° N + 0

16 kg

= 0.530
𝑚

𝑠2
.
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2. Newton’s 2nd Law for a System of Particles

𝑎com = 1.03
𝑚

𝑠2

2

+ 0.530
𝑚

𝑠2

2

≈ 1.2
𝑚

𝑠2
.

𝜃 = tan−1
0.530

1.03
= 27°.
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3. Linear Momentum

• In this section we return to the case of a single particle, in order to define
two new quantities.

• The linear momentum (or momentum) of a particle of mass 𝑚 and velocity
Ԧ𝑣 is a vector quantity Ԧ𝑝, defined as

Ԧ𝑝 = 𝑚 Ԧ𝑣.

• Ԧ𝑝 and Ԧ𝑣 have the same direction. The SI unit for momentum is kilogram-
meter per second (kg ∙ m/s).

• Newton expressed his second law of motion in terms of momentum:

The time rate of momentum change of a particle is equal to the net force
acting on the particle and is in the direction of that force.
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3. Linear Momentum

• In equation form, Newton's second law reads

Ԧ𝐹𝑛𝑒𝑡 =
𝑑 Ԧ𝑝

𝑑𝑡
.

• Note that Ԧ𝐹𝑛𝑒𝑡 =
𝑑 Ԧ𝑝

𝑑𝑡
=

𝑑 𝑚𝑣

𝑑𝑡
= 𝑚

𝑑 𝑣

𝑑𝑡
= 𝑚 Ԧ𝑎.

• In words, the net force Ԧ𝐹𝑛𝑒𝑡 on a particle changes the linear momentum Ԧ𝑝
of the particle. Conversely, the linear momentum can be changes only by a
net force. If there is no net force, Ԧ𝑝 cannot change.

24



3. Linear Momentum

(a) 1, 3, 2 & 4 tie.

(b) 3.
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4. Linear Momentum of a System of Particles

• Consider a system of 𝑛 particles, each with its own mass, velocity and
linear momentum. The particles may interact with each other, and external
forces may act on them. The total linear momentum 𝑃 of the system is

𝑃 = Ԧ𝑝1 + Ԧ𝑝2 +⋯+ Ԧ𝑝𝑛

= 𝑚1 Ԧ𝑣1 +𝑚2 Ԧ𝑣2 +⋯+𝑚𝑛 Ԧ𝑣𝑛,

which can be written as

𝑃 = 𝑀 Ԧ𝑣com.

• The linear momentum of a system of particles is equal to the product of
the total mass of the system and velocity of the center of mass.
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4. Linear Momentum of a System of Particles

• Differentiating the last relation with respect to time 𝑡 yields

𝑑𝑃

𝑑𝑡
= 𝑀

𝑑 Ԧ𝑣com
𝑑𝑡

= 𝑀 Ԧ𝑎com,

or equivalently

Ԧ𝐹net =
𝑑𝑃

𝑑𝑡
.

where Ԧ𝐹net is the net external force acting on the system.

• In words, the net external force Ԧ𝐹𝑛𝑒𝑡 acting on a system of particle changes
the linear momentum 𝑃 of the system. Conversely, the linear momentum
of a system can be changes only by a net external force. If there is no net
external force, 𝑃 cannot change.
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5. Collison and Impulse

• To change the momentum Ԧ𝑝 of a particle-like object a net force Ԧ𝐹𝑛𝑒𝑡 is
required.

• We could arrange for the object to collide with another. In such a collision,
the external force on the object is brief, large in magnitude, and suddenly
changes the body’s momentum.

• We start studying collisions by a simple collision in which a moving particle-
like object (a projectile) collides with some other body (a target.)

28



5. Collison and Impulse

• Single Collision:

Let the projectile be a ball and the target be a bat. During the
brief collision, the ball experiences a force that is great
enough to slow, stop, or even reverse its motion. The force
Ԧ𝐹 𝑡 varies during the collision and changes the ball’s linear
momentum Ԧ𝑝. By Newton’s second law ( Ԧ𝐹 = Τ𝑑 Ԧ𝑝 𝑑𝑡), the
change 𝑑 Ԧ𝑝 in the ball’s momentum in time interval 𝑑𝑡 is

𝑑 Ԧ𝑝 = Ԧ𝐹 𝑡 𝑑𝑡.

The net change in the ball’s momentum due to the collision,
from a time 𝑡𝑖 to a time 𝑡𝑓 is

න
𝑡𝑖

𝑡𝑓

𝑑 Ԧ𝑝 = න
𝑡𝑖

𝑡𝑓
Ԧ𝐹 𝑡 𝑑𝑡 .
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5. Collison and Impulse

• Single Collision:

Let the left hand side of the last equation gives us the
change in momentum Ԧ𝑝𝑓 − Ԧ𝑝𝑖 = ∆ Ԧ𝑝. The right hand side,
which is a measure of both the magnitude and the
duration of the collision, is called the impulse Ԧ𝐽 of the
collision:

Ԧ𝐽 = න
𝑡𝑖

𝑡𝑓
Ԧ𝐹 𝑡 𝑑𝑡 .

Therefore, the change in an object’s momentum is equal
to the impulse on the object:

∆ Ԧ𝑝 = Ԧ𝐽.
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5. Collison and Impulse

• Single Collision:

∆ Ԧ𝑝 = Ԧ𝐽 is a vector equation. Its 𝑥 component reads

∆𝑝𝑥 = 𝐽𝑥 ,

or

𝑝𝑓𝑥 − 𝑝𝑖𝑥 = න
𝑡𝑖

𝑡𝑓

𝐹𝑥 𝑡 𝑑𝑡 .

If we have a function for Ԧ𝐹 𝑡 , we can evaluate Ԧ𝐽 by
direct integration. If we have a plot Ԧ𝐹 versus time 𝑡, we
can find Ԧ𝐽 by evaluating the area between the curve and
the 𝑡 axis.
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5. Collison and Impulse

• Single Collision:

In many situations, we don’t know how the force varies
with time but we know the average magnitude 𝐹𝑎𝑣𝑔 of
the force and the duration ∆𝑡 (= 𝑡𝑓 − 𝑡𝑖) of the collision.
We then can write the magnitude of the impulse as

𝐽 = 𝐹𝑎𝑣𝑔∆𝑡.

We could have focused on the bat instead of the ball. By
Newton’s third law, the impulse on the bat has the same
magnitude but the opposite direction as the impulse on
the ball.
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5. Collison and Impulse

(a) No change. In either case ∆𝑝𝑦 = 𝑝𝑓𝑦 − 𝑝𝑖𝑦 = 0 −𝑚𝑣𝑖𝑦.

(b) No change. In either case, 𝐽𝑦 = ∆𝑝𝑦.

(c) Decrease. because 𝐹𝑎𝑣𝑔 = 𝐽𝑦/∆𝑡 and ∆𝑡 is 10 times longer.
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5. Collison and Impulse

Series of Collisions:

Here we consider the average force 𝐹𝑎𝑣𝑔 on a
body when it undergoes a series of identical,
repeated collision.

Consider a stream of projectile bodies, each with
mass 𝑚 and linear momentum Ԧ𝑝 = 𝑚 Ԧ𝑣 along
the 𝑥 axis. Let 𝑛 be the number of the projectiles
that collide in a time interval ∆𝑡 . The total
change in linear momentum for 𝑛 particles is
𝑛∆𝑝, where ∆𝑝 is the change in the momentum
of a single particle due to a collision.
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5. Collison and Impulse

Series of Collisions:

The resulting impulse Ԧ𝐽 on the target during the
time interval ∆𝑡 along the 𝑥 axis is

𝐽 = −𝑛∆𝑝.

The average force 𝐹𝑎𝑣𝑔 acting on the target
during ∆𝑡 is

𝐹𝑎𝑣𝑔,𝑥 =
𝐽

∆𝑡
= −

𝑛

∆𝑡
∆𝑝 = −

𝑛

∆𝑡
𝑚∆𝑣.

𝑛

∆𝑡
is the rate at which the projectile collides with

a target.
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5. Collison and Impulse

Series of Collisions:

If the projectiles stop after the collision, then ∆𝑣 = 𝑣𝑓 − 𝑣𝑖 = 0 − 𝑣 = −𝑣. If
instead, the projectiles bounce backward with the same speed 𝑣, then ∆𝑣
= 𝑣𝑓 − 𝑣𝑖 = −𝑣 − 𝑣 = −2𝑣.

In time ∆𝑡, an amount of mass ∆𝑚 = 𝑛𝑚 collides with the target. The
average force 𝐹𝑎𝑣𝑔,𝑥 becomes

𝐹𝑎𝑣𝑔,𝑥 = −
∆𝑚

∆𝑡
∆𝑣.

∆𝑚

∆𝑡
is the rate at which mass collides with the target.
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5. Collison and Impulse

(a) Zero.

(b) Positive.

(c) Positive 𝑦 direction.
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5. Collison and Impulse

Example 4: The figure is an overhead view of the
path taken by a race car driver as his car collides with
the racetrack wall. Just before the collision, he is
traveling at speed 𝑣𝑖 = 70 m/s along a straight line
at 30° from the wall. Just after the collision, he is
traveling at speed 𝑣𝑓 = 50 m/s along a straight line
at 10° from the wall. His mass 𝑚 is 80 kg.

(a) What is the impulse Ԧ𝐽 on the driver due to the
collision?
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5. Collison and Impulse

Ԧ𝐽 = Ԧ𝑝𝑓 − Ԧ𝑝𝑖 = 𝑚 Ԧ𝑣𝑓 − Ԧ𝑣𝑖 .

Along the 𝑥 axis:

𝐽𝑥= 𝑚 𝑣𝑓𝑥 − 𝑣𝑖𝑥

= 80 kg 50 m/s cos −10° − 70 m/s cos 30°

= −910 kg ∙
m

s
.

Along the 𝑦 axis:

𝐽𝑦= 𝑚 𝑣𝑓𝑦 − 𝑣𝑖𝑦

= 80 kg 50 m/s sin −10° − 70 m/s sin 30°

= −3495 kg ∙
m

s
.
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5. Collison and Impulse

The impulse is then

Ԧ𝐽 = −910 Ƹi − 3500 Ƹj kg ∙
m

s
,

and J = 3600 kg ∙
m

s
, at 105° below the 𝑥 axis.

(b) The collision lasts for 14 ms . What is the
magnitude of the average force on the driver during
the collision?

𝐹𝑎𝑣𝑔 =
𝐽

∆𝑡
=
3600 kg ∙

m
s

14 ms
= 2.6 × 105N.
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6. Conservation of Linear Momentum

• When the net external force Ԧ𝐹𝑛𝑒𝑡 (and impulse Ԧ𝐽) acting on a closed, isolated
system is zero, then Τ𝑑𝑃 𝑑𝑡 = 0. We therefore write

𝑃 = constant.

• If no net external force acts on a system of particles, the total liner momentum 𝑃
of the system cannot change.

• This result is called the law of conservation of linear momentum. If can be also
written as

𝑃𝑖 = 𝑃𝑓.

In words:

total linear momentum
at some intial time 𝑡𝑖

=
total linear momentum
at some final time 𝑡𝑓

.
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6. Conservation of Linear Momentum

• Each of the two vector equations in the previous slide is equivalent to three
equations corresponding to the conservation of linear momentum in three
mutually perpendicular directions (e.g. 𝑥𝑦𝑧).

• Depending on the forces acting on the system, linear momentum might be
conserved in some of these three directions.

If the net external force on a closed system is zero along an axis, then the
component of the linear momentum of the system along that axis cannot
change.
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6. Conservation of Linear Momentum

• Consider the example of tossing a stone. The gravitational force on the
stone changes its linear momentum in the vertical direction. The other two
horizontal components of the stone’s linear momentum do not change.

• Note that internal forces can change the linear momentum of a portion of
a system, but they cannot change the total momentum of the system.
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6. Conservation of Linear Momentum

44

(a) Zero. Ԧ𝐹𝑛𝑒𝑡 = 0 and hence 𝑃 = constant (= 0).

(b) No, because the momentum of the first piece is purely in the 𝑥 axis.

(c) The negative 𝑥 axis, by conservation of momentum.



6. Conservation of Linear Momentum

Example 5: The figure shows a space hauler and cargo
module, of total mass 𝑀, traveling along an 𝑥 axis in deep
space. They have an initial velocity of magnitude 2100 km
/h. With a small explosion, the hauler ejects the cargo
module, of mass 0.20 M. The module then travels at
1700 km/h along the 𝑥 axis. What then is the velocity of
the hauler?

The system is closed and isolated:

𝑃𝑓 = 𝑃𝑖 .

The initial momentum before the explosion is

𝑃𝑖 = 𝑀𝑣𝑖 .
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6. Conservation of Linear Momentum

After the explosion, the total momentum of the hauler 
and the cargo module is

𝑃𝑓 = 𝑚𝐻𝑣𝐻 +𝑚𝑀𝑣𝑀.

Equating the momenta before and after the collision we 
write

𝑀𝑣𝑖 = 𝑚𝐻𝑣𝐻 +𝑚𝑀𝑣𝑀.

Solving for 𝑣𝑀 and substituting we get that

𝑣𝑀 =
𝑀𝑣𝑖 −𝑚𝐻𝑣𝐻

𝑚𝑀

=
𝑀 2100 km/h − 0.20𝑀 1700 km/h

0.80𝑀
= 2200

km

h
.
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6. Conservation of Linear Momentum

Example 6: A firecracker placed inside a coconut of mass
𝑀, initially at rest on a frictionless floor, blows the
coconut into three pieces that slide across the floor. An
overhead view is shown in the figure. Piece 𝐶, with mass
0.30𝑀, has final speed 𝑣𝑓𝐶 = 5.0 m/s.

(a) What is the speed of piece 𝐵, with mass 0.20𝑀?

The system is closed and isolated and therefore 𝑃𝑓 = 𝑃𝑖 .

The coconut is initially at rest and hence 𝑃𝑖 = 0.
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6. Conservation of Linear Momentum

Along the 𝑦 axis:

𝑃𝑓𝑦 = 𝑃𝑓𝐴𝑦 + 𝑃𝑓𝐵𝑦 + 𝑃𝑓𝐶𝑦

= 𝑃𝑓𝐴 sin 180° + 𝑃𝑓𝐵 sin −50° + 𝑃𝑓𝐶 sin 80°

= 𝑚𝐵𝑣𝑓𝐵 sin −50° + 𝑚𝐶𝑣𝑓𝐶 sin 80° = 0.

Solving for 𝑣𝑓𝐵 and substituting we get

𝑣𝑓𝐵 = −
𝑚𝐶𝑣𝑓𝐶 sin 80°

𝑚𝐵 sin −50°
= −

0.3𝑀 5.0
m
s

sin 80°

0.2𝑀 sin −50°

= 9.6 m/s.
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6. Conservation of Linear Momentum

(b) What is the speed of piece 𝐴?

Along the 𝑥 axis:

𝑃𝑓𝑥 = 𝑃𝑓𝐴𝑥 + 𝑃𝑓𝐵𝑥 + 𝑃𝑓𝐶𝑥

= 𝑃𝑓𝐴 cos 180° + 𝑃𝑓𝐵 cos −50° + 𝑃𝑓𝐶 cos 80°

= −𝑚𝐴𝑣𝑓𝐴 +𝑚𝐵𝑣𝑓𝐵 cos 50° + 𝑚𝐶𝑣𝑓𝐶 cos 80°

= 0.

Solving for 𝑣𝑓𝐵 and substituting we get

𝑣𝑓𝐴 =
𝑚𝐵𝑣𝑓𝐵 cos 50° + 𝑚𝐶𝑣𝑓𝐶 cos 80°

𝑚𝐴

=
0.2𝑀 9.6

m
s

cos 50° + 0.3𝑀 5.0
m
s

cos 80°

0.5𝑀
= 3.0

m

s
.
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7. Momentum and Kinetic Energy in Collisions

• In the remaining of this chapter, we focus on all colliding particles in an
isolated closed system, instead of focusing on a single particle.

• We discussed a rule about the system: The total momentum of the system
is conserved.

• This rule is very powerful because it enables us to determine the results of
a collision without knowing the details of the collision.

• We will be interested in the total kinetic energy of a system of two colliding
particles. If that total energy happens to be unchanged by the collision,
then we say that the kinetic energy of the system is conserved. Such a
collision is called an elastic collision.
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7. Momentum and Kinetic Energy in Collisions

• In everyday collisions, some of the kinetic energy is always transferred to
other forms of energy. Thus the kinetic energy of the system is not
conserved and the collision is called an inelastic collision.

• In some situations, the loss in kinetic energy of a system due to a collision
is ‘small’ and we can approximate the collision to be elastic.

• The greatest loss in kinetic energy occurs if the colliding bodies stick
together, in which case the collision is called a completely inelastic
collision.
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8. Inelastic Collisions in One Dimension

• One-Dimensional Inelastic Collision:

Consider the two-body system shown in the
figure. The velocities before the collision
(subscript 𝑖) and after the collision (subscript 𝑓)
are indicated. The system is closed and isolated.
Therefore,

𝑃𝑖 = 𝑃𝑓,

or Ԧ𝑝1𝑖 + Ԧ𝑝2𝑖 = Ԧ𝑝1𝑓 + Ԧ𝑝2𝑓 .

Using 𝑝 = 𝑚𝑣, we can write this relation as

𝑚1𝑣1𝑖 +𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 +𝑚2𝑣2𝑓.
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8. Inelastic Collisions in One Dimension

• One-Dimensional Completely Inelastic Collision:

Consider the situation shown in the figure. After
the collision, the two particles stick and move
together with velocity 𝑉. We therefore write

𝑚1𝑣1𝑖 = 𝑚1 +𝑚2 𝑉,

or 𝑉 =
𝑚1

𝑚1+𝑚2
𝑣1𝑖 .

When the second particle is moving too, 𝑉
becomes

𝑉 =
𝑚1𝑣1𝑖 +𝑚2𝑣2𝑖

𝑚1 +𝑚2
.
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8. Inelastic Collisions in One Dimension

• Velocity of the Center of Mass:

In a closed, isolated system, the velocity Ԧ𝑣com of the center of mass cannot
be changed by a collision. We can write a relation between Ԧ𝑣com and the
total momentum 𝑃 of the two-body system. We know that

𝑃 = 𝑀 Ԧ𝑣com = 𝑚1 +𝑚2 Ԧ𝑣com,

which gives that

Ԧ𝑣com =
𝑃

𝑚1 +𝑚2
=

Ԧ𝑝1𝑖 + Ԧ𝑝2𝑖
𝑚1 +𝑚2

.
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8. Inelastic Collisions in One Dimension

(a) 10 kg ∙
m

s
.

(b) 14 kg ∙
m

s
.

(c) 6 kg ∙
m

s
.
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8. Inelastic Collisions in One Dimension

Example 6: The ballistic pendulum was used to
measure the speeds of bullets before electronic timing
devices were developed. The version shown in the
figure consists of a large block of wood of mass 𝑀
= 5.4 kg, hanging from two long cords. A bullet of mass
𝑚 = 9.5 g is fired into the block, coming quickly to rest.
The block-bullet then swing upward, their center of
mass rising a vertical distance ℎ = 6.3 cm before the
pendulum comes momentarily to rest at the end of its
arc. What is the speed of the bullet just prior to the
collision?
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8. Inelastic Collisions in One Dimension

We relate the speed 𝑉 of the bullet-block just after the
completely inelastic collision, to the initial bullet’s
speed 𝑣 by

𝑚𝑣 = 𝑚 +𝑀 𝑉,

or 𝑣 =
𝑚+𝑀

𝑚
𝑉.

We can also relate the rise ℎ of the bullet-block to its
speed 𝑉 just after the collision, by

𝑚 +𝑀 𝑔ℎ =
1

2
𝑚 +𝑀 𝑉2,

or 𝑉 = 2𝑔ℎ.
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8. Inelastic Collisions in One Dimension

The bullet’s speed 𝑣 becomes

𝑣 =
𝑚+𝑀

𝑚
2𝑔ℎ

=
9.5 × 10−3 kg + 5.4 kg

9.5 × 10−3 kg
2 9.8 m/s2 0.063 m

= 630
m

s
.
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9. Elastic Collisions in One Dimension

• Although everyday collisions are inelastic, we still can approximate some of
them as being elastic. We can approximate that the total kinetic energy of
the colliding bodies is conserved:

total kinetic energy
before the collisions

=
total kinetic energy
after the collisions

.

• This does not mean that the kinetic energy of each colliding body cannot
change. In an elastic collision, the kinetic energy of each colliding body may
change, but the total kinetic energy of the system does not change.
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9. Elastic Collisions in One Dimension

• Stationary Target:

Consider the situation shown in the figure.
Assuming that this two-body system is closed
and isolated, the net linear momentum of the
system is conserved:

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 +𝑚2𝑣2𝑓.

The total kinetic energy of the system is
conserved:

1

2
𝑚1𝑣1𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2 .
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9. Elastic Collisions in One Dimension

• Stationary Target:

If we know the two masses and 𝑣1𝑖, we can write the final velocities in
terms of these three quantities as

𝑣1𝑓 =
𝑚1 −𝑚2

𝑚1 +𝑚2
𝑣1𝑖 , 𝑣2𝑓 =

2𝑚1

𝑚1 +𝑚2
𝑣1𝑖 .

Note that 𝑣2𝑓 is always positive. 𝑣1𝑓 is positive when 𝑚1 > 𝑚2; the
projectile moves forward. 𝑣1𝑓 is negative when 𝑚1 < 𝑚2; the projectile
rebounds.

Let us consider a few special cases:
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9. Elastic Collisions in One Dimension

1. Equal masses: If 𝑚1 = 𝑚2,

𝑣1𝑓 = 0 and 𝑣2𝑓 = 𝑣1𝑖 .

The projectile stops completely, transferring all of its kinetic energy to 
the target.

2. A massive target: If 𝑚2 ≫ 𝑚1,

𝑣1𝑓 ≈ −𝑣1𝑖 and 𝑣2𝑓 =
2𝑚1

𝑚2
𝑣1𝑖 .

The projectile bounces back with essentially the same initial speed. The 
target moves forward at a low speed.
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9. Elastic Collisions in One Dimension

3. A massive projectile: If 𝑚1 ≫ 𝑚2,

𝑣1𝑓 = 𝑣1𝑖 and 𝑣2𝑓 = 2𝑣1𝑖 .

The projectile keeps on going with essentially the same speed. The target 
moves forward at twice the projectile’s speed.
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9. Elastic Collisions in One Dimension

• Moving Target:

Now we examine the situation in which both
bodies are initially moving, The conservation of
linear momentum and kinetic energy are
written, respectively, as

𝑚1𝑣1𝑖 +𝑚2𝑣2𝑖 = 𝑚1𝑣1𝑓 +𝑚2𝑣2𝑓.

and

1

2
𝑚1𝑣1𝑖

2 +
1

2
𝑚2𝑣2𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2 .
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9. Elastic Collisions in One Dimension

• Moving Target:

We then solve for the final velocities to get

𝑣1𝑓 =
𝑚1 −𝑚2

𝑚1 +𝑚2
𝑣1𝑖 +

2𝑚2

𝑚1 +𝑚2
𝑣2𝑖 ,

𝑣2𝑓 =
2𝑚1

𝑚1 +𝑚2
𝑣1𝑖 +

𝑚2 −𝑚1

𝑚1 +𝑚2
𝑣2𝑖 .
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9. Elastic Collisions in One Dimension

66

(a) 4 kg ∙ m/s.

(b) 8 kg ∙ m/s.

(c) 3 J.



9. Elastic Collisions in One Dimension

Example 7: Two metal spheres, suspended by
vertical cords, initially just touch, as shown in
the figure. Sphere 1, with mass 𝑚1 = 30 g, is
pulled to the left to height ℎ1 = 8.0 cm, and
then released from rest. After swinging down,
it undergoes an elastic collision with sphere 2,
whose mass 𝑚2 = 75 g. What is the velocity
𝑣1𝑓 of sphere 1 just after the collision?

First, we need to find the speed of sphere 1
just before it collides with sphere 2. We have
that

1

2
𝑚1𝑣1𝑖

2 = 𝑚1𝑔ℎ1.
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9. Elastic Collisions in One Dimension

We find that

𝑣1𝑖 = 2 9.8 m/s2 0.080 m = 1.25 m/s.

The final velocity of sphere 1 just after the
elastic collision is given by

𝑣1𝑓 =
𝑚1 −𝑚2

𝑚1 +𝑚2
𝑣1𝑖

=
30 g − 75 g

30 g + 75 g
1.25 m/s

= −0.54
m

s
.

68



10. Collisions in Two Dimensions

When a collision is not head-on, the bodies do not end up travelling along
their initial axis. The conservation of linear momentum imposes that

Ԧ𝑝1𝑖 + Ԧ𝑝2𝑖 = Ԧ𝑝1𝑓 + Ԧ𝑝2𝑓 .

If the collision is elastic then

𝐾1𝑖 + 𝐾2𝑖 = 𝐾1𝑓 + 𝐾2𝑓.
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10. Collisions in Two Dimensions

Consider the glancing collision shown in the figure
( 𝑣2𝑖 = 0 ). Conservation of momentum for
components along the 𝑥 axis and 𝑦 axis read,
respectively,

𝑚1𝑣1𝑖 = 𝑚1𝑣1𝑓 cos 𝜃1 +𝑚2𝑣2𝑓 cos 𝜃2 ,

0 = 𝑚1𝑣1𝑓 sin 𝜃1 +𝑚2𝑣2𝑓 sin 𝜃2 .

The expression for the conservation of kinetic energy
becomes

1

2
𝑚1𝑣1𝑖

2 =
1

2
𝑚1𝑣1𝑓

2 +
1

2
𝑚2𝑣2𝑓

2 .
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10. Collisions in Two Dimensions

These three equations contain 7 unknowns; 2
masses; 3 velocities; and 2 angles. If we have 4 of
these variables we can solve for the remaining three.
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10. Collisions in Two Dimensions

Ԧ𝑝1𝑖 = Ԧ𝑝1𝑓 + Ԧ𝑝2𝑓 .

(a) 𝑝2𝑓𝑥 = 𝑝1𝑖𝑥 − 𝑝1𝑓𝑥 = 6 kg ∙ m/s − 4 kg ∙ m/s = 2 kg ∙ m/s.

(b) 𝑝2𝑓𝑦 = 𝑝1𝑖𝑦 − 𝑝1𝑓𝑦 = 0 kg ∙ m/s − −3 kg ∙ m/s = 3 kg ∙ m/s.
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