
Chapter 8
Potential Energy and Conservation of 

Energy
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Introduction

Potential energy 𝑈 is energy that can be associated with the configuration
(arrangement) of a system of objects that exert conservative forces on each
other.

Consider a block attached to a spring that is attached to the ceiling. The
block starts to fall after it is released from rest where the spring is in its
relaxed state. The system then consists of Earth and the block. The
configuration of the system changes (the distance between Earth and the
block).

We can account for the block motion by defining a gravitational potential
energy 𝑈.

This is the energy associated with the state of separation between two objects that
attract each other by the gravitational force, here the block and Earth.
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Introduction

The block then stretches the spring, the system of objects consists of the
block and the spring. The force between the objects is elastic. The
configuration of the system changes (the spring stretches).

We can account for the block’s decrease in kinetic energy and the spring’s increase
in length by defining an elastic potential energy 𝑈.

This is the energy associated with the state of compression or extension of an
elastic object, here the spring.
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Work and Potential Energy

• In CH. 7 we discussed the relation between work and a change in kinetic energy.
Here we discuss the relation between work and change in potential energy.

• Throw a object upward. As the object rises, the work 𝑊𝑔 done on the object by
the gravitational force is negative because the force transfers energy from the
kinetic energy of the object. We can now say that this energy is transferred by the
gravitational force to the gravitational potential energy of the object–Earth
system.

The object slows, stops, and then begins to fall back down because of the
gravitational force. During the fall, the transfer is reversed: The work 𝑊𝑔 done on
the object by the gravitational force is now positive—that force transfers energy
from the gravitational potential energy of the object–Earth system to the kinetic
energy of the object.
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Work and Potential Energy

• For either rise or fall, the change ∆𝑈 in gravitational potential energy is defined as
being equal to the negative of the work done on the object by the gravitational
force:

∆𝑈 = −𝑊,

which is true for any type of work done by conservative forces.

• Consider a block–spring system. If we give the block a shove to send it moving
rightward, the spring force acts leftward and thus does negative work on the
block, transferring energy from the kinetic energy of the block to the elastic
potential energy of the spring–block system.

The block slows and eventually stops, and then begins to move leftward because
the spring force is still leftward. The transfer of energy is then reversed—it is from
potential energy of the spring–block system to kinetic energy of the block.
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Work and Potential Energy

• Conservative and Nonconservative Forces:

The two previous systems discussed share the following key elements:

1. The system consists of two or more objects.

2. A force acts between an object in the system and the rest of the system.

3. When the system configuration changes, the force does work 𝑊1 on the
object, transferring energy between the kinetic energy 𝐾 of the object and
some other type of energy of the system.

4. When the configuration change is revered, the force reverses the energy
transfer, doing work 𝑊2 in the process.

In situations when 𝑊1 = −𝑊2 is always true, the other type of energy is
potential energy and the force is said to be a conservative force.
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Work and Potential Energy

• Conservative and Nonconservative Forces:

The gravitational force and the spring force are both conservative. A force that is
not conservative is called a nonconservative force.

The kinetic friction force and the drag force (e.g. air resistance) are
nonconservative.

Consider a block sliding across a floor that is not frictionless. The kinetic frictional
force from the floor slows the block transferring energy from its kinetic energy to
thermal energy. This energy transfer cannot be reversed. Thermal energy cannot
be transferred back to the block’s kinetic energy by the kinetic frictional force.
The kinetic frictional force is the nonconservative. Therefore, thermal energy is
not a potential energy.
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Path Independence of Conservative Force

Path independence is the primary test for determining whether a force is
conservative or not.

Let a force act on a particle that moves along a closed path. If the total energy it
transfers to and from the particle during the round trip is ZERO, the force is
conservative. In other words:

The net work done by a conservative force on a particle moving around any closed
path is ZERO.

The gravitational force is conservative. Throw an object upward with speed 𝑣0 and
kinetic energy 𝑚𝑣0

2/2. The object slows and stops then falls black down. When the
object returns to the launch point it again has speed 𝑣0 and kinetic energy 𝑚𝑣0

2/2.
The net work done on the object by the gravitational force is zero.
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Path Independence of Conservative Force

An important result of the closed–path test is
that:

The work done by a conservative force on a
particle moving between two points does not
depend on the path taken by the particle.

In the figure a particle moves from point 𝑎 to
point 𝑏 along either path 1 or path 2. If only a
conservative force acts on the particle, the work
done on the particle is the same along the two
paths:

𝑊𝑎𝑏,1 = 𝑊𝑎𝑏,2.

This result is very helpful in simplifying some
problem that involve conservative forces only.
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Path Independence of Conservative Force

The net work around the large loop is zero. However, the net work around the
small loop is 60 J + 60 J = 120 J. Therefore, the force is not nonconservative.
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Path Independence of Conservative Force

Example 1: The figure shows a 2.0 kg block
of slippery cheese that slides along a
frictionless track from point 𝑎 to point 𝑏.
The cheese travels through a total distance
of 2.0 m along the track, and a net vertical
distance of 0.80 m . How much work is
done on the cheese by the gravitational
force during the slide?

We cannot use 𝑊𝑔 = 𝑚𝑔𝑑 cos𝜙, because
𝜙 varies along the track in unknown way.

Luckily, we can find the work by choosing
another simple path between 𝑎 and 𝑏 since
the gravitational force is conservative.
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Path Independence of Conservative Force

We choose the dashed path shown in the
figure. Along the horizontal segment

𝑊𝑔,ℎ = 𝑚𝑔𝑑 cos 90° = 0.

Along the vertical segment

𝑊𝑔,𝑣 = 𝑚𝑔𝑑 cos 0°
= 2.0 𝑘𝑔 9.8 𝑚/𝑠2 0.80 m
= 15.7 J.

The total work done by the gravitational
force is

𝑊𝑔 = 𝑊𝑔,ℎ +𝑊𝑔,𝑣 ≈ 16 J.
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Determining Potential Energy Values

Here we want to find equations for gravitational potential energy and elastic
potential energy. Before that we find a general relation between a conservative
force and the associated potential energy.

We found before that

∆𝑈 = −𝑊.

The work done by a variable force is given by

𝑊 = න
𝑥𝑖

𝑥𝑓

𝐹 𝑥 𝑑𝑥 .

Combining the results we can write

∆𝑈 = −න
𝑥𝑖

𝑥𝑓

𝐹 𝑥 𝑑𝑥
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Determining Potential Energy Values

• Gravitational Potential Energy:

When a particle of mass 𝑚 moving vertically along the 𝑦 axis from point 𝑦𝑖 to
point 𝑦𝑓, the change in the gravitational potential energy of the particle–Earth
system is given by

∆𝑈 = −න
𝑦𝑖

𝑦𝑓

−𝑚𝑔 𝑑𝑦 = 𝑚𝑔න
𝑦𝑖

𝑦𝑓

𝑑𝑦 = 𝑚𝑔 𝑦 𝑦𝑖

𝑦𝑓
,

or
∆𝑈 = 𝑚𝑔 𝑦𝑓 − 𝑦𝑖 = 𝑚𝑔∆𝑦.
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Determining Potential Energy Values

• Gravitational Potential Energy:

Only changes ∆𝑈 in gravitational potential energy are physically meaningful.
However, it is useful to associate certain gravitational potential value 𝑈 with a
certain particle–Earth system when the particle is at a certain height 𝑦. We then
write

𝑈 − 𝑈𝑖 = 𝑚𝑔 𝑦 − 𝑦𝑖 .

We take 𝑈𝑖 to be the gravitational potential energy of the system when it is in a
reference configuration in which the particle is at a reference point 𝑦𝑖. We
usually take 𝑈𝑖 and 𝑦𝑖 to be zero. Therefore, we write

𝑈 𝑦 = 𝑚𝑔𝑦.
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Determining Potential Energy Values

• Gravitational Potential Energy:

The gravitational potential energy associated with a particle–Earth system
depends only on the vertical position y (or height) of the particle relative to the
reference position 𝑦 = 0, not on the horizontal position.
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Determining Potential Energy Values

• Elastic Potential Energy:

Consider a block of mass 𝑚 that is attached to the free end of a spring of spring
constant 𝑘. When the block moves from point 𝑥𝑖 to 𝑥𝑓, the corresponding change
in the elastic potential energy of the block–mass system is

∆𝑈 = −න
𝑥𝑖

𝑥𝑓

−𝑘𝑥 𝑑𝑥 = 𝑘න
𝑥𝑖

𝑥𝑓

𝑥 𝑑𝑥 =
1

2
𝑘 𝑥2 𝑥𝑖

𝑥𝑓
,

or

∆𝑈 =
1

2
𝑘𝑥𝑓

2 −
1

2
𝑘𝑥𝑖

2.
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Determining Potential Energy Values

• Elastic Potential Energy:

To associate a potential energy value 𝑈 with the block at position 𝑥, we choose
the reference configuration to be where the spring is at its relax length and the
block is at 𝑥𝑖 = 0. Then 𝑈𝑖 = 0 and the previous expression reduces to

𝑈 − 0 =
1

2
𝑘𝑥2 − 0,

or

𝑈 𝑥 =
1

2
𝑘𝑥2.
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Determining Potential Energy Values

Example 2: A 2.0 kg sloth hangs 5.0 m above the
ground. (a) What is the gravitational potential energy 𝑈
of the sloth–Earth system if we take the reference
point 𝑦 = 0 to be (1) at the ground, (2) at a balcony
floor that is 3.0 m above the ground, (3) at the limb,
and (4) 1.0 m above the limb? Take the gravitational
potential energy to be zero at 𝑦 = 0.

(1) 𝑈 = 𝑚𝑔𝑦 = 2.0 kg 9.8 m/s2 5.0 m = 98 J.

(2) 𝑈 = 𝑚𝑔𝑦 = 2.0 kg 9.8 m/s2 2.0 m = 39 J

(3) 𝑈 = 𝑚𝑔𝑦 = 2.0 kg 9.8 m/s2 0 m = 0 J

(4) 𝑈 = 𝑚𝑔𝑦 = 2.0 kg 9.8 m/s2 −1.0 m ≈ −20 J
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Determining Potential Energy Values

(b) The sloth drops to the ground. For each choice of
reference point, what is the change ∆𝑈 in the potential
energy of the sloth–Earth system due to the fall?

In all cases ∆𝑦 = −5.0 m. Therefore,

∆𝑈 = 𝑚𝑔∆𝑦

= 2.0 kg 9.8
m

s2
−5.0 m = −98 J.

(c) What is the work done by the gravitational force
during dropping?

𝑊𝑔 = −∆𝑈 = 98 J.
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Conservation of Mechanical Energy

• The mechanical energy 𝐸𝑚𝑒𝑐 of a system is the sum of its potential energy 𝑈
and kinetic energy 𝐾 of the objects within the system:

𝐸mec = 𝐾 + 𝑈.

• We study here what happens to this mechanical energy when only
conservative forces cause energy transfers within the system (on frictional
or drag forces). We also assume that the system is isolated; no external
force from an object outside the system causes changes inside the system.

• When a constant force does work 𝑊 on an object within the system, that
force transfers energy between kinetic energy 𝐾 of the object and potential
energy 𝑈 of the system. According to the work–energy theorem:
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Conservation of Mechanical Energy

∆𝐾 = 𝑊,

and from a previous section, we found that the change in potential energy is

∆𝑈 = −𝑊.

Combining these equations gives

∆𝐾 = −∆𝑈.

In words, the increase in one of these energies is equal to the decrease in the
other.

We can rewrite the above expression as

𝐾2 − 𝐾1 = − 𝑈2 − 𝑈1 ,

or

24



Conservation of Mechanical Energy

𝐾2 + 𝑈2 = 𝐾1 +𝑈1.

In words,

the sum of 𝐾 and 𝑈 for
any state of a system

=
the sum of 𝐾 and 𝑈 for any
other state of the system

.

In an isolated system where only conservative forces cause energy changes,
the kinetic energy and potential energy can change, but their sum, the
mechanical energy 𝐸mec of the system, cannot change.

• This result is known as the principle of conservation of mechanical energy.
With the aid of the relation ∆𝐾 = −∆𝑈, we can express this principle as

∆𝐸mec = ∆𝐾 + ∆𝑈 = 0.
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Conservation of Mechanical Energy

The principle of conservation of mechanical energy enables us to solve
problems that would be difficult to solve using Newtonian mechanics.

When the mechanical energy of a system is conserved, we can relate the
sum of kinetic energy and potential energy at one instant to that at
another instant without considering the intermediate motion and without
finding the work done by the forces involved.
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In all cases, 𝐸mec = 𝐾 + 𝑈.
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∆𝐾 = −∆𝑈 = −𝑚𝑔∆𝑦.

In all cases ∆𝐾 (and 𝑣𝑓) is the same, since ∆𝑦 is the same.

Conservation of Mechanical Energy



Conservation of Mechanical Energy

Example 3: a child of mass 𝑚 is released
from rest at the top of a water slide, at
height h = 8.5 m above the bottom of the
slide. Assuming that the slide is frictionless
because of the water on it, find the child’s
speed at the bottom of the slide.

There are to forces that act on the child. A
normal force which does no work, and a
gravitational force which is a conservative
force. The mechanical energy of the
isolated, child-Earth system is therefore
conserved.
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Conservation of Mechanical Energy

The mechanical energy of the system at the
top of the slide 𝐸mec,t is equal to
mechanical energy of the system at the
bottom of the slide 𝐸mec,𝑏:

𝐸mec,t = 𝐸mec,𝑏 ,

or

𝐾t + 𝑈t = 𝐾b + 𝑈b.

Using 𝐾 = Τ1 2𝑚𝑣2 and 𝑈 = 𝑚𝑔𝑦, we get
that

0 +𝑚𝑔ℎ =
1

2
𝑚𝑣𝑏

2 + 0.
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Conservation of Mechanical Energy

Solving for 𝑣𝑏 and substituting we get that

𝑣𝑏 = 2𝑔ℎ = 2 9.8 Τm s2 8.5 m

= 13 Τm s .
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Potential Energy Curve and Force

• Suppose that we know the potential energy function 𝑈 𝑥 of a particular
system and want to find the corresponding conservative force.

• For one dimensional motion, the work 𝑊 done by a force that acts on a
particle as it moves through a distance ∆𝑥 is 𝐹 𝑥 ∆𝑥. We can then write

∆𝑈 𝑥 = −𝑊 = −𝐹 𝑥 ∆𝑥.

Solving for 𝐹 𝑥 and taking the limit as ∆𝑥 approaches zero we find that

𝐹 𝑥 = −
𝑑𝑈 𝑥

𝑑𝑥
.

Lets us check this expression for the spring force and gravitational force.
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Potential Energy Curve and Force

• The elastic potential energy function for a spring force is 𝑈 𝑥 =
1

2
𝑘𝑥2, and the

spring force is

𝐹 𝑥 = −
𝑑 Τ1 2𝑘𝑥2

𝑑𝑥
= −

1

2
𝑘
𝑑 𝑥2

𝑑𝑥
= −

1

2
𝑘 2𝑥 = −𝑘𝑥.

• The gravitational potential energy function for a particle–Earth system is 𝑈 𝑦
= 𝑚𝑔𝑦, and the gravitation force is

𝐹 𝑦 = −
𝑑 𝑚𝑔𝑦

𝑑𝑦
= −𝑚𝑔

𝑑 𝑦

𝑑𝑦
= −𝑚𝑔.
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Work Done on a System by an External Force

• In Ch. 7, we defined work as being energy, transferred to or
from an object via a force acting on the object. We can now
extend that definition to an external force acting on a
system of objects.

• Work is energy transferred to or from a system by means of
an external force acting on that system.

• If a system is a single particle or particle like object, the
work done on the system can change only the kinetic energy
of the system (work–energy theorem). The particle has only
one energy channel; kinetic energy. If a system is more
complicated, an external force can change other forms of
energy such as potential energy; a more complicated system
can have multiple energy channels.
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Work Done on a System by an External Force

• No Friction Involved

Consider the process of throwing a bowling–ball. The
work 𝑊 done by the applied (external) force can
result in a change ∆𝐾 in the ball’s kinetic energy. If
the ball and Earth become more separated, there is a
change ∆𝑈 in the gravitational potential energy of
the ball–Earth system, and the work is

𝑊 = ∆𝐾 + ∆𝑈,

or
𝑊 = ∆𝐸mec,

where ∆𝐸mec is the change in mechanical energy.
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Work Done on a System by an External Force

• Friction Involved

Consider the system shown in the figure. A constant
horizontal force pulls a block along an 𝑥 axis and
through a displacement of magnitude 𝑑, increasing
the block’s velocity from Ԧ𝑣0 to Ԧ𝑣. Newton’s 2nd law
for the components along 𝑥 axis reads

𝐹 − 𝑓𝑘 = 𝑚𝑎.

The acceleration is constant since the forces are
constant. Therefore, Ԧ𝑣0 to Ԧ𝑣 are related by

𝑣2 = 𝑣0
2 + 2𝑎𝑑.
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Work Done on a System by an External Force

• Friction Involved

Solving this relation for 𝑎, substituting the result in the expression for 𝑣, and
rearranging give

𝐹𝑑 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 + 𝑓𝑘𝑑,

or
𝐹𝑑 = ∆𝐾 + 𝑓𝑘𝑑.

In a more general situation, there can be a change in potential energy as well. The
previous equation is generalized to

𝐹𝑑 = ∆𝐸mec + 𝑓𝑘𝑑.

As the block slides, the frictional force increases the thermal energy 𝐸th of the
block and floor.
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Work Done on a System by an External Force

• Friction Involved

Through experiment, we find that the increase ∆𝐸th in thermal energy is equal to
the product of the magnitudes 𝑓k and 𝑑:

∆𝐸th = 𝑓k𝑑.

Thus we can write that

𝐹𝑑 = ∆𝐸mec + ∆𝐸th.

𝐹𝑑 is the work 𝑊 done by the external force Ԧ𝐹 on the block–floor system, since
the block’s mechanical energy changes, and the thermal energy of the block and
floor changes as well. That work is

𝑊 = ∆𝐸mec + ∆𝐸th.
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Work Done on a System by an External Force

39
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Conservation of Mechanical Energy

Example 4: A man pushes a wood crate of total mass 𝑚 = 14 kg across a concrete
floor with a constant horizontal force Ԧ𝐹 of magnitude 40 N. In a straight-line
displacement of magnitude 𝑑 = 0.50 m, the speed of the crate decreases from 𝑣0
= 0.60 m/s to 𝑣 = 0.20 m/s.

(a) How much work is done by force Ԧ𝐹, and on what system does it do the work?

The force Ԧ𝐹 is constant and therefore we can write

𝑊 = 𝐹𝑑 cos 0° = 40 N 0.50 m = 20 J.

The decrease in the crate’s speed indicates that there is a kinetic frictional force. 
The work is done on the crate–floor system, resulting in change in both ∆𝐸th and 
∆𝐾. 
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Conservation of Mechanical Energy

(b) What is the increase ∆𝐸th in the thermal energy of the crate and floor?

We know that the work 𝑊 done by the force Ԧ𝐹 is related to ∆𝐾 and ∆𝐸th by

𝑊 = ∆𝐾 + ∆𝐸th.

Because there are no potential energy changes,

∆𝐾 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2.

Substituting for ∆𝐾 in the first equation and solving for ∆𝐸th we get that

∆𝐸th = 𝑊 +
1

2
𝑚 𝑣0

2 − 𝑣2

= 20 J +
1

2
14 kg 0.60 m/s 2 − 0.20 m/s 2 ≈ 22 J.
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Conservation of Energy

• The total energy 𝐸 of a system is conserved. It can change only by amounts of
energy that are transferred to or from the system.

• The only type of energy transfer that we have considered is work 𝑊 done on a
system. The law of energy conservation states that:

𝑊 = ∆𝐸 = ∆𝐸mec + ∆𝐸th + ∆𝐸int,

where ∆𝐸int is any other type of internal energy.

• This law is not derived from basic physics principles. It is a law based on countless
number of experiments.
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Conservation of Energy

• Isolated System

• If a system is isolated from its environment, there can be no energy transfers
to or from the system.

• The law of conservation of energy states that: The total energy 𝐸 of an isolated
system cannot change.

• Many energy transfers maybe going within an isolated system between
different types of energy. However, the total of all types of energy in the
system cannot change.

• For an isolated system, the law of conservation of energy can be written in two
ways.
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Conservation of Energy

• Isolated System

• The first is:

∆𝐸mec + ∆𝐸th + ∆𝐸int = 0.

We can let ∆𝐸mec = 𝐸mec,2 − 𝐸mec,1 and write that

𝐸mec,2 = 𝐸mec,1 − ∆𝐸th − ∆𝐸int.

This equation says:

In an isolated system, we can relate the total energy at one instant to the total
energy at another instant without considering the energies at intermediate times.
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Conservation of Energy

• Isolated System

• This fact can be very helpful in solving problems about isolated systems, when
you need to relate energies before and after a process occurring in the system.

• When we discussed conservation of mechanical energy, we discussed a special
case of isolated systems in which nonconservative forces do not act within
them. In that special case ∆𝐸th and ∆𝐸int are both zero. The mechanical
energy of an isolated system is conserved when nonconservative forces do not
act on it.
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Conservation of Energy

• Isolated System

• This fact can be very helpful in solving problems about isolated systems, when
you need to relate energies before and after a process occurring in the system.

• When we discussed conservation of mechanical energy, we discussed a special
case of isolated systems in which nonconservative forces do not act within
them. In that special case ∆𝐸th and ∆𝐸int are both zero. The mechanical
energy of an isolated system is conserved when nonconservative forces do not
act on it.
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Conservation of Energy

• External forces and Internal Energy Transfers

• An external force can change the kinetic energy or potential energy of an
object without doing work on the object. The role of the force is to transfer
energy from one type to another inside the object.

• Consider the example of a stationary roller skater. The roller skater then moves
away from a railing by pushing against it. His kinetic energy increases because
of an external force Ԧ𝐹 from the railing. However, that force does not transfer
energy to him from the railing, and hence does no work on him. Rather, his
kinetic energy increases as a result of internal transfers from the biochemical
energy in his muscles.

• In situations like this, we can sometimes relate the external force Ԧ𝐹 on an
object to the change in the object’s mechanical energy if we can simplify the
situation.
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Conservation of Energy

• External forces and Internal Energy Transfers

• We may relate the change in the roller skater kinetic energy to the external
force Ԧ𝐹 by

∆𝐾 = 𝐹𝑑 cos𝜙 .

If the situation involves potential energy change then this equation becomes

∆𝐾 + ∆𝑈 = 𝐹𝑑 cos𝜙 .
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Conservation of Energy

• Power

In a more general sense, power 𝑃 is the rate at which energy is transferred
(instead of work) by a force from one type to another. If an amount of energy 𝐸 is
transferred in an amount of time 𝑡, the average power due to the force is

𝑃𝑎𝑣𝑔 =
Δ𝐸

Δ𝑡
.

Similarly, the instantaneous power due to the force is

𝑃 =
𝑑𝐸

𝑑𝑡
.
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Conservation of Mechanical Energy

Example 5: 2.0 kg package slides along a
floor with speed 𝑣1 = 4.0 m/s. It then runs
into and compresses a spring, until the
package momentarily stops. Its path to the
initially relaxed spring is frictionless, but as it
compresses the spring, a kinetic frictional
force from the floor, of magnitude 15 N, acts
on the package. If k = 10000 N/m, by what
distance 𝑑 is the spring compressed when
the package stops?
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Conservation of Mechanical Energy

The forces that do work on the isolated
system of the package–spring–floor–wall
system are the kinetic frictional force and the
spring force. can then apply the law of
conservation of energy in the form

𝐸mec,2 = 𝐸mec,1 − ∆𝐸th.

For the initial state

𝐸mec,1 = 𝐾1 + 𝑈1 =
1

2
𝑚𝑣1

2 +
1

2
𝑘 0

=
1

2
𝑚𝑣1

2
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Conservation of Mechanical Energy

For the final state

𝐸mec,2 = 𝐾2 + 𝑈2 =
1

2
𝑚 0 +

1

2
𝑘𝑑2

=
1

2
𝑘𝑑2.

∆𝐸th is the work done by the frictional force
𝑓𝑘𝑑. We can now write

1

2
𝑘𝑑2 =

1

2
𝑚𝑣1

2 − 𝑓𝑘𝑑.

After substituting we find that

5000𝑑2 + 15𝑑 − 16 = 0,

which give that 𝑑 = 0.055 m.
52


