Chapter 4

Motion in Two and Three Dimensions




4.1 Position and Displacement

* One way to locate a particle is with a position vector To locate the
77. particle, this
R . is how far
e A position vector 7 extend from a reference point parallel to z.

(usually the origin) to the particle. In unit-vector
notation, r has the form |
F=xi+yj+zk 1

| This is how far
parallel to x.

This is how far
parallel to y.

The particle has the rectangular coordinates 5t @m); /
(x,v,z). For example, a particle with position vector | (B m)i L

7= (=3m)i+ (2 m)j + (5 mE, |

is located at the point (—3 m,2 m,5 m).




4.1 Position and Displacement

* As the particle moves 7 changes. If the
position vector changes from 7; to 75, then
the particle's displacement A7 is

As the particle moves,
the position vector
must change.

Tangent \

R

Qlacement.
Path

X

- - -
Ar =71, —17.
In unit-vector notation

A = (x; —x)i+ (V, —y)] + (2 — z1k
=Ax1+Ayj+Azk

where 7, = x41 + y4j + z,k and

7:)2 —_ xZ’l\ —+ ij\ —+ ZzR.




4.2 Position and Displacement

Example 1: The coordinates (meters) of a rabbit’s position as functions of
time t (seconds) are given by

x =—031t*+72¢t+ 28,
y =0.22t*—9.1t + 30.

Att = 15 s, what is the rabbit’s position vector in unit vector notation and in
magnitude-angle notation?

The position vector is
r(t) = x()1 + y(t)).

Att = 15s,x = 66 mand y = —57 m, and therefore,
r = (66 m)i — (57 m)j.




4.2 Position and Displacement

The magnitude of 7 is

r=+/x2+y2=,/(66m)%+ (=57 m)?
= 87 m.

The angle of 7 is

66 m
0 =tan~! Y tan~! = —41°,
X —57 m
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This is the y component.




4.2 Average Velocity & Instantaneous Velocity

* As in one dimension, we can define a particle’s average velocity and
instantaneous velocity (velocity).

 Average Velocity: If a particle moves through a displacement A7 in a
time interval At, then its average velocity is

AT
Vave = 3
In unit vector notation
. Ax Ay Az
Vavg = g 1 30+ K

Uavg IS in the direction of A7




4.2 Average Velocity & Instantaneous Velocity

* Instantaneous Velocity: It is defined as T

AT dr tangent to the path.
v = lim —=—.
At—0 At dt 1
U is tangent to the particle’s path at the Ta“gem\

g - 0 HIE paltities patit at die oo
particle’s position. : | These are the xand y

components of the vector
at this instant.

In unit vector notation

dx dy dz.
v __(xl+y]+Zk)_d_l+d_]+dtk ) bt 7
=vx1+vy1+vzk.

Uy, Vy and v, are the components of V.




4.2 Average Velocity & Instantaneous Velocity

IZ Checkpoint 1 )

The figure shows a circular path taken by a particle.
If the instantaneous velocity of the particle is v = r
(2 m/s)i — (2 m/s)j, through which quadrant is the par-

ticle moving at that instant if it is traveling (a) clockwise
and (b) counterclockwise around the circle? For both
cases, draw v on the figure.

(a) The first quadrant. (b) The third quadrant.
y y




4.2 Average Velocity & Instantaneous Velocity

Example 2: The coordinates (meters) of a rabbit’s position as functions of
time t (seconds) are given by

x =—031t*+72¢t+ 28,
y =0.22t*—9.1t + 30.

Find the rabbit’s velocity v at t = 15 s.

_dx d

=—=—(=031t%24+72t+28)=—-0.62t 7.2,
Yx Tt dt( i +28) i

y d

=—=—(0.22t*—9.1t+30) =044t —9.1.
dt dt( )

Att =15s,v, = —2.1m/sand v, = —2.5 m/s.

’Uy —
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4.2 Average Velocity & Instantaneous Velocity

Therefore, ¥ (m)
U =11+ v,j=(-21m/s)i + (—2.5m/s)j. b
The magnitude and angle of v are, " \
respectively, TN (m)
m
v =4(=2.1m/s)? 4+ (—=2.5m/s)? = 3.3 < 20
% —2.5m/s -
9 =tan" 12 = tan™! / = —130°. - -
Uy —2.1 m/s _m\?‘%}ﬂ

These are the x and y
components of the vector
at this instant.
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4.3 Average Acceleration & Instantaneous
Acceleration

* When a particle’s velocity changes from v, to v, in a time interval At, its
average acceleration is

v, —vU; AU

fave =TT T At

* The instantaneous acceleration (acceleration) is
., . Av dv
4= AT ar

e A particle undergoes acceleration if:
1. The magnitude of its velocity changes.
2. The direction of its velocity changes.




4.3 Average Acceleration & Instantaneous
Acceleration

* |n unit-vector notation

., d A A N
a= ot (le + vy] + vzk)

N

= a,l + a,] + ask.
a,, a, and a, are the components of a.

* The direction of a is tangent to the particle’s velocity curve v(t) at the
particle’s position.




4.3 Average Acceleration & Instantaneous
Acceleration

\'CH ECKPOINT 2

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane:
(1) x=-32+4r—2 and y=6:2—4r (3) 7 =221 — (4t + 3)]

—

2) x=-33—4 and y=-52+6  (4) 7 = (413 — 201 + 3]

. ; . — ;
Are the x and y acceleration components constant? Is acceleration a constant?

(1) a, = —6 m/s?, a, =12 m/s*. (ay, ay and d are constant.)

(2) a, = —18t m/s?, a,

—10 m/s?. (ay is constant.)
(3) d=(4m/s)]I. (ax, a, and d are constant.)

(
(4) d= (2401 (ay, is constant.)
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4.3 Average Acceleration & Instantaneous
Acceleration

Example 3: The coordinates (meters) of a rabbit’s position as functions of
time t (seconds) are given by

x =—031t*+72¢t+ 28,
y =0.22t*—9.1t + 30.

Find the rabbit’s acceleration a att = 15 s.

dv d
a, = d—tx = (—0.62t +7.2) = —0.62 m/s?,
dv d
_ Y _ _
ay =—==— (0.44t —9.1) = 0.44 m/s2.

Combining the components gives that @ = (—0.62 m/s?)1 + (0.44 m/s?)j.

14




4.3 Average Acceleration & Instantaneous
Acceleration

The magnitude and angle of a are, respectively,

— 2 2
‘T \/ A T ay =0 \
x (m)

= \/(—0.62 Hl/SZ)2 + (0.4-4- m/sz)z 0 20 40 N\ 60 = 80
m
= 0'765_2'
a 0.44 m/s?
9 =tan !X = tan~?! / = 145°.
a, —0.62 m/s?

These are the xand y
components of the vector
at this instant.
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4.4 Projectile Motion

* We analyze here the motion of a particle in a vertical plane thrown with
some initial velocity v, and always in free fall.

* Such a particle is called a projectile and its motion is called projectile
motion. The air effect is neglected.




4.4 Projectile Motion

* The initial velocity v, of the projectile has Projectile motion
the form

- ~ A
Vg = Vool —+ on].

— & Launch velocity

Vox = Vg COS By and vy, = vy sin by . 1y
iy

Launch angle

* Both 7 and v of the projectile change —Q
during the motion. "

Launch
«a=—gj=—9.8]jall the time during the
flight.




4.4 Projectile Motion

* The horizontal and vertical motions are independent.

¥ Vertical motion + Horizontal motion - y Projectile motion

—
i

—

e e

o
—

——— This vertical motion plus
e this horizontal motion o

— . .. ; e =&/ L: ‘h velocity
P produces this projectile motion. —— T nen veloan
oy|  Vertical velocity Voy I
.'9"' Launch angle
— — x — )=
0 0| Vox 0| Vox
Launch Launch

https://www.youtube.com/watch?v=hIW6hZkgmkA
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https://www.youtube.com/watch?v=hlW6hZkgmkA

A

4 Projectile Motion




4.5 Projectile Motion

\'CHECKPOINT 3

At a certain instant, a fly ball has velocity vV = 251 — 4.9] (the x axis is horizontal, the y
axis is upward, and V is in meters per second). Has the ball passed its highest point?

Yes, since v, = —4.9 < 0.

Reasoning: After the ball is launched, it travels upward (v, > 0) then slows down
vertically to rest (v, = 0) and then starts to move downward (v, < 0).
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4.6 Projectile Motion Analyzed

1. The Horizontal Motion:

1

a, =0

X — Xg = Voyt +=a,t?

or

X — Xg = VgCcosByt.

Velocities:

or

2

Uy = Vg, T Ayt

Ve = Vg, = Vp COS B,

2. The Vertical Motion: | a,=—g

1 2
V—9Yo = voyt+§ayt
or
. 1
Y —7Vo = vosmeot—zgt
Uy = Vgy T Qyt
or
vy = Vg sinfy — gt,
also,

U;% = (v sinBp)* — 29(y — ¥o).




4.6 Projectile Motion Analyzed

3. The Equation of the path:

We can find the equation of the projectile trajectory by eliminating t
between the vertical and horizontal equations of motion. Solving the
horizontal equation of motion

X —Xg =7Vgcosbyt,

for t gives that
X — Xg

t = :
Vg €C0Ss B

We then use this t expression in the vertical equation of motion:

B g X — Xg 1 X — Xg ’
Y~ Yo = Fo Y0 vgcosBy,/ 29 \vgcosB,/




4.6 Projectile Motion Analyzed

3. The Equation of the path:
B . X — Xg 1 X — Xg :
Y~ Yo = VoSl bo vgcosBy/ 29 \vgcosBy/

Choosing x, = yo = 0 and rearranging yield

gx*

2(vg cos 0y)?

y=tanf,x —

This is an equation of a parabola.




4.6 Projectile Motion Analyzed

4. The Horizontal Range:

The horizontal range (R) of the projectile is the distance it has traveled when it
returns to its initial height. We write

R =vycosb,t, Xo=0,x=R
. 1
Ozvosmeot—zgt. Y =
These equations yield
2v5 v
R = ——sinf, cos , = —sin 26,
g g

R is maximum when sin 260, = 1 or 8, = 45°.

This expression is valid only when the launch height y, and the final height y
are the same!




4.6 Projectile Motion Analyzed

\.CH ECKPOINT 4

A fly ball 1s hit to the outfield. During its flight (ignore the effects of the air), what hap-
pens to its (a) horizontal and (b) vertical components of velocity? What are the (c) hor-
1zontal and (d) vertical components of 1ts acceleration during ascent, during descent,
and at the topmost point of its flight?

(a) v, is constant.

(b) vy, isinitially positive, then decreases to zero, and then becomes increasingly
negative.

(c) a, is always zero.

(d) a, isalways equal to —g = —9.8 m/s*.
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4.6 Projectile Motion Analyzed

Example 4: a rescue plane flies
at 198 km/h (= 55.0 m/s) and
constant height h =500m
toward a point directly over a
victim, where a rescue capsule is
to land.

(a) What should be the
horizontal distance d when the
capsule release is made?

A




4.6 Projectile Motion Analyzed

We first find the time it takes the capsule to reach the water surface. Using the
vertical motion equation

_ 1
Y — Vo :vosmeot—zgtz,

or
1
0 —500m = (55.0m/s) sin0°¢t — 5 (9.8 m/s?)t?,

we get that ¢ = 10.1 s. To find d we use the horizontal motion equation
X — Xog =7Vgcosbyt,

or
d —0=(55.0m/s)cos0°t,

which gives that d = 556 m.

27




4.6 Projectile Motion Analyzed

(b) As the capsule reaches the water, what is its velocity in unit-vector notation
and in magnitude-angle notation?

v, = Vg cos B, = (55.0 m/s) cos 0° = 55.0 m/s.
vy = vysinfy — gt
= (55.0 m/s) sin 0° — (9.8 m/s%)(10.1 s)
= —99.9 m/s.

The capsule velocity at the surface is therefore v = (55.0 m/s)i — (99.9 m
/s)j. The magnitude and angle of ¥ are, respectively

v =4/(55.0m/s)2 + (=99.9m/s)? = 113m/s,
—99.9m/s

§ = tan~ 1 — —60.9°
M 55.0m/s
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4.6 Projectile Motion Analyzed

Example 5: a pirate ship 560 m from a
fort defending a harbor entrance. A
defense cannon, located at sea level,

fires balls at initial speed vy = 82 m/s.

(a) At what angle 8, from the
horizontal must a ball be fired to hit
the ship?

R=560m

Either launch angle
gives a hit.

1




4.6 Projectile Motion Analyzed

The cannon and the pirate ship are at the same height. The horizontal displacement
is therefore the range. The cannon angle should be adjusted to make the range R
= 560 m. The two are related by
Vg
R = —sin 26,.
g
Solving for 8, we get

JgR

2
Vo

__,(9.8m/s*)(560m) 1

-1 = 1s.1n = —sin~10.816
2 (82 m/s)? 2 ' '

0 1
0 =7 sin

Your calculator gives that sin~1 0.816 = 54.7°, which corresponds to 8, = 27°.

Additionally, sin™!0.816 = 180° — 54.7° = 125.3°, which corresponds to 6,
= 63°. This second solution is also acceptable since it is between 0° and 90°.
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4.6 Projectile Motion Analyzed

(b) What is the maximum range of the cannonballs?

The maximum range corresponds to the launch angle 6, = 45°. Therefore,

(82m/s)*
R="5g myralll 2(45°) = 686 m = 690 m.

Reading!
sample Problem 4.05 Launched into the air from a water slide
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4.7 Uniform Circular Motion

* A particle is in uniform circular motion if it travels

The acceleration vector

around a circle or a circular arc at a constant speed. always points toward the
 The particle is accelerating because the velocity center.
changes direction. -1
* The acceleration and velocity have constant / -
magnitudes but they change direction.
* U is tangent to the circle in the direction of motion. -

e a is always radially inward and therefore called

centripetal acceleration.
) The velocity \

* |ts magnitude is
U vector is always

a=" Read the proof on p. 67 tangent to the path.

T is the radius of the circle or arc.




4.7 Uniform Circular Motion

 The particle travels the circumference of the circl

(27r) in time
_ 27T

v
T is called the period of revolution or simply the perio
of the motion.

* In general, the period is the time for a particle to
go around a closed path exactly once.

The acceleration vector
always points toward the
center.

<)

The velocity \

vector Is always
tangent to the path.




4.7 Uniform Circular Motion

\.CHECKPOINT 5

An object moves at constant speed along a circular path in a horizontal xy plane, with
the center at the origin. When the object 1s at x = —2 m. its velocity 1s —(4 m/s)j. Give
the object’s (a) velocity and (b) acceleration at y = 2 m.

- my\
(a)v=—(4?)1.
2
_z_(45) _om
bja="T=5178% ’
i=-(83)]
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4.7 Uniform Circular Motion

Example 5: What is the magnitude of the acceleration, in g
units, of a pilot whose aircraft enters a horizontal circular
turn with a velocity of v; = (40014 5007) m/s and 24.0 s
later leaves the turn with a velocity of ﬁf = (—4001
—5007) m/s?

Assuming the motion is uniform circular, the acceleration is
centripetal and has the magnitude

UZ vf
a=—.
r
To find r we need to know the period T':
2TCT

v
35




4.7 Uniform Circular Motion

It took the aircraft 24.0 s to complete half the circle. The
period T is therefore 2(24.0) s = 48.0 s.

Combining the above to expression we get

2T
a=—.,
v
V= \/(400 m/s)? + (500 m/s)* = 640.3 m/s,
2nT  2m(48.0s)
a = — =
v 640.3 m/s

m
= 83.85—2 ~ 8.6 g.

36
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4.8 Relative Motion in One Dimension

* The velocity of a particle depends on the
reference frame of the observer.

* From the figure

Xpa = Xpp T+ Xpa.

Differentiating with respect to time
d d d

—Xpag = - Xpp + —5-XBa,
qtPA T ¢ PB T gy "BA

or
Upg = Upp T Upy-

)

Frame A

Frame B moves past

frame A while both
observe P.
y
Frame B
P
T.Eij.:!l. ‘t'}}ﬂ
Jou,
| Sl

XBA

X
Xpga =Xpp + Xpa

- .
Vg4 is constant

X




4.8 Relative Motion in One Dimension

Differentiating again with respect to time gives

d d N d Frame B moves past
- VpAa = 77:VpB T 57VBA frame A while both
dt dt dt X D
_ observe P.
Apa = Qppg-
y y
The acceleration of a particle is the same when | g0 4 | Frame B
measured in two frames in relative motion with / J Q »
constant velocity.
Tfj",’l x.li]'ﬂ
| .
| = x X
XBA Xpa =Xpg t+ Xpa

Vg, IS constant
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4.8 Relative Motion in One Dimension

CHECKPOINT 6

A train is travelling at 60 km/h due north. At some instant, a student in the train
measured the velocity and acceleration of a particle in the train to be 0 and 3 m/s?,
respectively. What are (a) the velocity and (b) acceleration of the particle relative to
another student on ground?

(a) 60 km/h due north.
(b) 3 m/s?.




4.8 Relative Motion in One Dimension

Example 6: Suppose that the velocity of a truck
(frame B) relative to a standing person (frame A)

is a constant v, = 52 km/h and a car (particle Frame B moves past
P) is moving in the negative direction of the x frame A while both
axis. observe P.

—

(a) If the person measures a constant velocity vpy4 y |
= —78 km/h for the car, what velocity vpg will Frame 4 | Frame B

the truck measure? Qr

X
A PB

AL,

X

X
XBA Xpg =Xpp T Xpy




4.8 Relative Motion in One Dimension

Upg = Upp + VUpy,
or
km km km
UPB — UPA — UBA — —78T— SZT = —13OT

(b) If the car brakes to a stop relative to the standing

person (and thus relative to the ground) in time t |

= 10s at constant acceleration, what
acceleration ap, relative to him?

v—vg 0-(=78km/h) m

Apyg = ; 10 s 225_2

41

s its | -

y
Frame A

Frame B moves past
frame A while both

observe

Frame B

AL,

P.

Q°r

X
3A PB

XBA

X
XpaA =Xpp + Xpa

X




4.8 Relative Motion in One Dimension

(c) What is the acceleration apg of the car relative to
the truck during the braking?

The initial velocity of the car relative to the truck is Frame B moves past
— 130 km/h and the final velocity is —52 km/h. frame A while both
Therefore, observe P.
v—v9 —52km/h— (=130 km/h) ) y
Appg = — Frame A Frame B
t 10 s
= 22 " | or
23
Vpa B
P> X

: X
XBA Xpg =Xpp T Xpa
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4.8 Relative Motion in Two Dimension

* From the figure
Tpa = Tpg + Tpa.
Differentiating with respect to time
Upa = Upg t+ Upa.
Differentiating again with respect to time gives

dpy = App.

= Frame B
rBA

Frame A

43
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4.8 Relative Motion in Two Dimension

Example 7: a plane moves due east
while the pilot points the plane
somewhat south of east, toward a
steady wind that blows to the
northeast. The plane has velocity vVpy,
relative to the wind of 215 km/h,
directed at angle 6 south of east. The
wind has velocity vy, relative to the
ground with speed 65.0 km/h, directed
20.0° east of north. What is the
magnitude of the velocity vp; of the

plane relative to the ground, and what
is @7

N This is the plane's actual
direction of travel.

This is the plane's
orientation.

20°%_,
Vpw 7 Vwe

This i1s the wind
direction.




4.8 Relative Motion in Two Dimension

The three velocities are related by

N This is the plane's actual
4 4 4 direction of travel.
Vpe = Vpw T V-

—

For the y-components, we have A ’ > E

P N
— This is the plane's b, 209,
vPG,y UPW:y + UWG:y' orientation. vew yALS

or This is the wind

direction.
0 = (215 km/h) sin(—8) + (65.0 km/h) sin 70°.

Solving for 8 we find that
. +(65.0 km/h) sin 70°

= 16.5°.
(215 km/h)

6 = sin™
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4.8 Relative Motion in Two Dimension

For the x-components, we have

N This is the plane's actual
. direction of travel.
Vpgx = Vpwx T Vwe xs 5
\ VpG

or PN =

o N

Vpe cos 0 = (215 km/h) cos(—16.5°) This s fhe plane's \ 2 e
+(650 km/h) COS 700 ) This is the wind

direction.

which gives vp; = 228 km/h.
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