
Chapter 13
GRAVITATION
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1. Newton’s Law of Gravitation

• Every body in the universe attracts every other body. This tendency of bodies
to move toward one another is called gravitation.

• Newton proposed a force law that we call Newton’s law of gravitation: Every
particle attracts any other particle with a gravitational force of magnitude

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
.

Here 𝑚1 and 𝑚2 are the masses of the particles, 𝑟 is the distance between
them, and 𝐺 is the gravitational constant, which has the value

𝐺 = 6.67 × 10−11
N ∙ m2

kg2
or

m3

kg ∙ s2
.
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1. Newton’s Law of Gravitation

• The direction of Ԧ𝐹 on particle 1 is toward particle 2. The force is said to be
attractive force because every particle attracts the other toward it.

• We can describe Ԧ𝐹 as being in the positive direction of an 𝑟 axis extending
radially from particle 1 to particle 2. We can also describe Ԧ𝐹 using a radial unit
vector Ƹ𝑟 that is directed away from particle 1 along the r axis. The force on
particle 1 is then

Ԧ𝐹 = 𝐺
𝑚1𝑚2

𝑟2
Ƹ𝑟.

• The gravitational force on particle 2 due to particle 1 has the same magnitude
as the force on particle 1 but in the opposite direction. The two forces form a
third-law force pair.
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1. Newton’s Law of Gravitation

• Newton’s law of gravitation can also be applied to real, extended objects as
long as their sizes are small relative to the distance between them.

• Newton also proved an important theorem called the shell theorem: A uniform
spherical shell of matter attracts a particle that is outside the shell as if all the
shell’s mass were concentrated at its center.

• Earth can be thought of as a nest of such shells. Thus, Earth gravitationally behaves
like a particle, located at the center of Earth with a mass equal to that of Earth.

• Suppose that Earth pulls down on an apple with a force of 1.0 N. The apple must
pull up on Earth with a force of magnitude 1.0 N. Although the forces are equal,
they produce very different accelerations. The acceleration of the apple near
Earth’s surface is 9.8 m/s2 and the acceleration of Earth, relative to the center
of mass of the apple–Earth system, is about 1 × 10−25 m/s2.
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1. Newton’s Law of Gravitation
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All tie.



2. Gravitation & the Principle of Superposition

• If we have a group of particles, we can find the net gravitational force on any of
them using the principle of superposition.

• For 𝑛 interacting particles, we can write the principle of superposition for
gravitational forces on particle 1 as

Ԧ𝐹1,net = Ԧ𝐹12 + Ԧ𝐹13 +⋯+ Ԧ𝐹1𝑛.

Here Ԧ𝐹1𝑛 is the force on particle 1 due to particle 𝑛. More compactly,

Ԧ𝐹1,net =෍
𝑖=2

𝑛
Ԧ𝐹1𝑖 .

• The gravitational force on a particle from a real (extended) body is

Ԧ𝐹1 = න𝑑 Ԧ𝐹 .
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2. Gravitation & the Principle of Superposition
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(a) 1, 2 & 4 tie, 3. (b)  Closer to line 𝑑. 



2. Gravitation & the Principle of Superposition

Example 1: The figure shows an arrangement of three
particles, particle 1 of mass 𝑚1 = 6.0 kg and particles 2 and
3 of mass 𝑚2 = 𝑚3 = 4.0 kg, and distance 𝑎 = 2.0 cm.
What is the net gravitational force Ԧ𝐹1,net on particle 1 due to
the other particles?

𝐹12 = 𝐺
𝑚1𝑚2

𝑎2

= 6.67 × 10−11m3kg ∙ s2
6.0 kg 4.0 kg

0.020 m 2

= 4.00 × 10−6 N.

Thus, Ԧ𝐹12 = 4.00 × 10−6 N Ƹj.
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2. Gravitation & the Principle of Superposition

𝐹13 = 𝐺
𝑚1𝑚3

2𝑎 2

= 6.67 × 10−11m3kg ∙ s2
6.0 kg 4.0 kg

0.040 m 2

= 1.00 × 10−6 N.

Thus, Ԧ𝐹13 = − 1.00 × 10−6 N Ƹi.

𝐹1,net = 𝐹12
2 + 𝐹13

2

= 4.00 × 10−6 N 2 + 1.00 × 10−6 N 2

= 4.1 × 10−6 N.

𝜃 = tan−1 𝐹12/−𝐹13 = 104°.
9



3. Gravitation Near Earth’s Surface

• Let us assume that Earth is a uniform sphere of mass
𝑀. The magnitude of the gravitational force from
Earth on a particle of mass 𝑚, at distance 𝑟 from
Earth’s center is

𝐹 = 𝐺
𝑀𝑚

𝑟2
.

• If the particle is released, it will fall with gravitational
acceleration Ԧ𝑎𝑔. According to Newton’s second law

𝐹 = 𝑚𝑎𝑔 .

Comparing these two expression we find

𝑎𝑔 =
𝐺𝑀

𝑟2
.
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3. Gravitation Near Earth’s Surface

• We assumed before that Earth is an inertial frame and
hence assumed that the free-fall acceleration 𝑔 is the
same as the gravitational acceleration 𝑎𝑟. However, these
two quantities are different for three reasons:

1. Earth’s mass is not uniformly distributed.

2. Earth is not a perfect sphere.

3. Earth is rotating.

• Let us examine the third effect. Consider the situation
shown in the figure. The crate has a centripetal
acceleration 𝑎𝑟 = 𝜔2𝑅 . Newton’s second law for
components along the 𝑟 axis can be written as

𝐹𝑁 −𝑚𝑎𝑔 = 𝑚 −𝜔2𝑅 .
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3. Gravitation Near Earth’s Surface

• 𝐹𝑁 is equal to the weight read on the scale. Thus we
substitute 𝑚𝑔 for 𝐹𝑁:

𝑚𝑔 = 𝑚𝑎𝑔 −𝑚 𝜔2𝑅 .

In words,

measured
weight

=
magnitude of

gravitational force
−

mass times
centripetal acceleration

.

Cancelling 𝑚 from the equation above yields

𝑔 = 𝑎𝑔 −𝜔2𝑅.

free fall
acceleration

=
gravitational
acceleration

−
centripetal
acceleration

.
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3. Gravitation Near Earth’s Surface

• The difference between 𝑔 and 𝑎𝑔 is greatest at the
equator. Direct calculation reveals that 𝜔2𝑅 is about
0.034

m

s2
. This fact justifies neglecting the difference

between 𝑔 and 𝑎𝑔.
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4. Gravitation Inside Earth

• A uniform shell of matter exerts no net gravitational force on a particle located
inside it.

• If Earth’s mass were uniformly distributed, the gravitational force acting on a
particle would be maximum at the Earth’s surface and would decrease as the
particle moved away from the planet.

• If the particle were to move inward, the gravitational force would change in
two ways:

1. It would tend to increase as the particle would get closer to the Earth’s center.

2. It would decrease as the thickness of the shell of material lying outside the
particle radial position would exert no force on the particle.
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4. Gravitation Inside Earth

• For uniform Earth, the second effect would prevail and the force would
decrease to zero at the center of Earth.

• However, for the real (nonuniform) Earth, the force on the particle actually
increases as the particle begins to descend. The force reaches a maximum at a
certain depth and then decreases as the particle descends farther.

15



4. Gravitation Inside Earth

Example 2: Find the gravitational force on a capsule of
mass 𝑚 when it reaches a distance 𝑟 from Earth’s center.
Assume that Earth is a sphere of uniform density 𝜌 (mass
per unit volume).

The portion of Earth outside the sphere of radius 𝑟 does not
produce net gravitational force. Only the portion of Earth
inside the sphere of radius 𝑟 produces net gravitational
force. The inside mass 𝑀ins is given by

𝑀ins = 𝜌𝑉ins = 𝜌
4𝜋𝑟3

3
.
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4. Gravitation Inside Earth

The magnitude of the gravitation force on the capsule is

𝐹 =
𝐺𝑚𝑀ins

𝑟2
=
𝐺𝑚

𝑟2
𝜌
4𝜋𝑟3

3
=
4𝜋𝐺𝑚𝜌

3
𝑟.

𝐹 is maximum at Earth’s surface and zero at the center of
Earth.
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5. Gravitational Potential Energy

• In Ch. 8, we discussed the gravitational potential energy of particle-Earth
system. We restricted our discussion to systems near Earth’s surface so that 𝑔
is constant. We then chose a reference configuration of the system as having a
zero gravitational potential energy. The gravitational potential energy
decreased when the separation between the particle and Earth decreased.

• Now we consider the gravitational potential energy 𝑈 of two particles, of
mass 𝑚 and 𝑀 , separated by a distance 𝑟 . We choose the reference
configuration that 𝑈 become 0 as 𝑟 approaches ∞. 𝑈 is therefore negative for
any finite 𝑟 and becomes more negative as the particles become closer.

• We take the gravitational potential energy of a two-particle system to be

𝑈 = −
𝐺𝑀𝑚

𝑟
18



5. Gravitational Potential Energy

• If we have more than two particles, we consider
each pair of particles in turn, calculate the
gravitational potential energy of that pair as if
the other particles were not there and then
algebraically sum the results.

• For example, the gravitational potential energy
of the system shown in the figure is

𝑈 = −
𝐺𝑚1𝑚2

𝑟12
+
𝐺𝑚1𝑚3

𝑟13
+
𝐺𝑚2𝑚3

𝑟23
.
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5. Gravitational Potential Energy

• Path Independence:

The gravitational force is a conservative force. The work
𝑊 done by the gravitational force on a particle moving
from an initial point 𝑖 to a final point 𝑓 is independent of
the path taken between the points. We know that

∆𝑈 = −𝑊.

Because the work done by a conservative force is path
independent, the change ∆𝑈 in gravitational potential
energy is also path independent.
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5. Gravitational Potential Energy

• Potential Energy and Force:

In Ch. 8 we have seen that 𝐹 𝑥 = −𝑑𝑈 𝑥 /𝑑𝑥. For gravitational potential
energy we have

𝐹 = −
𝑑

𝑑𝑟
−
𝐺𝑀𝑚

𝑟
= −

𝐺𝑀𝑚

𝑟2
.

The minus sign indicates that the force on mass m points radially inward,
toward mass 𝑀.
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5. Gravitational Potential Energy

• Escape Speed:

If you fire a projectile upward, usually it will slow, stop momentarily and
return to Earth. There is a minimum initial speed that will cause the projectile
to move upward forever, theoretically coming to rest only at infinity. This
minimum initial speed is called the escape speed.

Consider a projectile of mass 𝑚 leaving the surface of a planet with escape

speed 𝑣. The projectile has a kinetic energy 𝐾 =
1

2
𝑚𝑣2 and potential energy

𝑈 = −
𝐺𝑀𝑚

𝑅
, where 𝑀 and 𝑅 are the planet’s mass and radius, respectively. At

infinity, the projectile stops and has no kinetic energy. It also has no potential
energy there. Its total energy at infinity is 0.
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5. Gravitational Potential Energy

• Escape Speed:

By the principle of conservation of energy, the projectile’s total energy is 0 too
at the planet’s surface. Therefore, we write

𝐾 + 𝑈 =
1

2
𝑚𝑣2 + −

𝐺𝑀𝑚

𝑅
= 0.

Solving for 𝑣 we get

𝑣 =
2𝐺𝑀

𝑅
.

23



5. Gravitational Potential Energy
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5. Gravitational Potential Energy

Example 3: A black hole has a “no return” surface called the event horizon.
Nothing, not even light, can escape from that surface or anywhere inside the black
hole. If Earth were compressed into a black hole, what would be its radius?

Substituting the speed of light 𝑐 in the expression for the escape speed we write

𝑐 =
2𝐺𝑀

𝑅
.

Solving for 𝑅 and substituting we get

𝑅 =
2𝐺𝑀

𝑐2
=
2 6.67 × 10−11 m3/kg ∙ s2 5.98 × 1024 kg

3.00 × 108 m/s 2
= 8.89 mm!
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5. Gravitational Potential Energy
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(a) Increases.

(b) Negative.



5. Gravitational Potential Energy

Example 4: An asteroid, headed directly toward Earth, has a speed of 12 km/s
relative to the planet when the asteroid is 10 Earth radii from Earth’s center.
Neglecting the effects of Earth’s atmosphere on the asteroid, find the asteroid’s
speed 𝑣𝑓 when it reaches Earth’s surface.

Conservation of mechanical energy is written as

𝐾𝑓 + 𝑈𝑓 = 𝐾𝑖 + 𝑈𝑖 ,

or

1

2
𝑚𝑣𝑓

2 −
𝐺𝑀𝑚

𝑅𝐸
=
1

2
𝑚𝑣𝑖

2 −
𝐺𝑀𝑚

10𝑅𝐸
.
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5. Gravitational Potential Energy

Solving for 𝑣𝑓 and substituting yields

𝑣𝑓 = 𝑣𝑖
2 +

𝐺𝑀

𝑅𝐸
1 −

1

10

= 12 × 103 m/s 2 +
6.67 × 10−11 m3/kg ∙ s2 5.98 × 1024 kg

6.37 × 106 m
1 −

1

10

= 16 km/s.
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6. Planets and Satellites: Kepler’s Laws

• In this section we discuss the three Kepler's laws of
planetary motion.

1. THE LAW OF ORBITS: All planets move in elliptical
orbits, with the Sun at one focus.

The orbit in the figure is described by giving its
semimajor axis 𝑎 and its eccentricity 𝑒. It is
defined so that 𝑒𝑎 is the distance from the center
of the ellipse to either focus 𝐹 or 𝐹′. For a circle 𝑒
= 0. For Earth’s orbit 𝑒 = 0.0167.
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6. Planets and Satellites: Kepler’s Laws

• In this section we discuss the three Kepler's laws of
planetary motion.

1. THE LAW OF ORBITS: All planets move in elliptical
orbits, with the Sun at one focus.

The orbit in the figure is described by giving its
semimajor axis 𝑎 and its eccentricity 𝑒. It is
defined so that 𝑒𝑎 is the distance from the center
of the ellipse to either focus 𝐹 or 𝐹′. For a circle 𝑒
= 0. For Earth’s orbit 𝑒 = 0.0167.
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6. Planets and Satellites: Kepler’s Laws

2. THE LAW OF AREAS: A line that connects a planet
to the Sun sweeps out equal areas in the plane of
the planet's orbit in equal time internal; the rate
𝑑𝐴/𝑑𝑡 at which it sweeps out area 𝐴 is constant.

This law tells us that the planet moves most
slowly when it is farthest from the Sun and most
rapidly when it is nearest to the Sun.

This law is equivalent to the law of conservation
of angular momentum.
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6. Planets and Satellites: Kepler’s Laws

From the figure, the area swept out by the line
connecting the Sun and the planet in time ∆𝑡 is ∆𝐴

≈
1

2
𝑟2∆𝜃. The instantaneous rate of area swept out is

𝑑𝐴

𝑑𝑡
=
1

2
𝑟2

𝑑𝜃

𝑑𝑡
=
1

2
𝑟2𝜔.

The magnitude of the angular momentum 𝐿 of the
planet is given by

𝐿 = 𝑟𝑝⊥ = 𝑟 𝑚𝑣⊥ = 𝑟 𝑚𝜔𝑟 = 𝑚𝑟2𝜔.

Combining the above results we have

𝑑𝐴

𝑑𝑡
=

𝐿

2𝑚
.
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6. Planets and Satellites: Kepler’s Laws

• The constancy of 𝑑𝐴/𝑑𝑡, according to Kepler, is
equivalent to the constancy of 𝐿. Kepler’s second
law is therefore equivalent to the law of
conservation of angular momentum.
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6. Planets and Satellites: Kepler’s Laws

3. THE LAW OF PERIODS: The square of the period
of any planet is proportional to the cube of the
semimajor axis of its orbit.

To see this we apply Newton's second law to the
orbiting planet in the figure and write

𝐺𝑀𝑚

𝑟2
= 𝑚 𝜔2𝑟 .

Using 𝜔 = 2𝜋/𝑇 we find that

𝑇2 =
4𝜋2

𝐺𝑀
𝑟3.
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6. Planets and Satellites: Kepler’s Laws

𝑇2 =
4𝜋2

𝐺𝑀
𝑟3.

The law of periods holds for elliptical
orbits, provided that we replace 𝑟 with
𝑎, the semimajor axis of the ellipse.

This law predicts that 𝑇2/𝑎3 is the
same for every object orbiting around a
given massive body.
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6. Planets and Satellites: Kepler’s Laws

(a) Satellite 2.

(b) Satellite 1.
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6. Planets and Satellites: Kepler’s Laws

Example 5: Comet Halley orbits the Sun with a period of
76 years and, in 1986, had a distance of closest approach
to the Sun, its perihelion distance 𝑅𝑝, of 8.9 × 1010 m.
This is between the orbits of Mercury and Venus.

(a) What is the comet’s farthest distance from the Sun,
which is called its aphelion distance 𝑅𝑎?

From the figure, we see that 𝑅𝑝 + 𝑅𝑎 = 2𝑎. We can find
𝑎 using

𝑎 =
𝐺𝑀𝑇2

4𝜋2

1/3

= 2.7 × 1012 m,

where we have used 𝑀 = 1.99 × 1030 kg and 𝑇 = 2.4
× 109 s.
37



6. Planets and Satellites: Kepler’s Laws

We now have

𝑅𝑎 = 2𝑎 − 𝑅𝑝
= 2 2.7 × 1012 m − 8.9 × 1010 m
= 5.3 × 1012 m.

(b) What is the eccentricity of the orbit of comet Halley?

From the figure, we see that 𝑅𝑝 + 𝑒𝑎 = 𝑎. Therefore,

𝑒 =
𝑎 − 𝑅𝑝

𝑎
= 1 −

𝑅𝑝
𝑎

= 1 −
8.9 × 1010 m

2.7 × 1012 m
= 0.97.
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7. Satellites: Orbits and Energy

• As a satellite orbits Earth in an elliptical path, both its speed, which fixes its
kinetic energy 𝐾, and its distance from the center of Earth, which fixes its
gravitational potential energy 𝑈, fluctuate with fixed periods. The mechanical
energy 𝐸 of the satellite, however, remains constant.

• The potential energy of the system is

𝑈 = −
𝐺𝑀𝑚

𝑟
,

where 𝑀 and 𝑚 are the masses of Earth and satellite, respectively. For
satellite in a circular orbit, Newton’s second law reads

𝐺𝑀𝑚

𝑟2
= 𝑚

𝑣2

𝑟
.
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7. Satellites: Orbits and Energy

• The kinetic energy of the satellite is then

𝐾 =
1

2
𝑚𝑣2 =

𝐺𝑀𝑚

2𝑟
,

or

𝐾 = −
𝑈

2
.

• The total mechanical energy of the orbiting satellite is

𝐸 = 𝐾 + 𝑈 =
𝐺𝑀𝑚

2𝑟
−
𝐺𝑀𝑚

𝑟
,

or

𝐸 = −
𝐺𝑀𝑚

2𝑟
= −𝐾.
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7. Satellites: Orbits and Energy

• 𝐸 = −𝐾 tells us that for a satellite in a circular
orbit, the total mechanical energy 𝐸 is the
negative of the kinetic energy 𝐾.

• For a satellite in an elliptical orbit of semimajor
axis 𝑎 the expression for 𝐸 becomes

𝐸 = −
𝐺𝑀𝑚

2𝑎
.

The energy of an orbiting satellite is determined
by the semimajor axis only. The energy does not
depend of eccentricity 𝑒. For example, the same
satellite in the four different orbits shown in the
figure have the same energy.
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7. Satellites: Orbits and Energy

(a) 1.

(b) Less.
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7. Satellites: Orbits and Energy

Example 6: A playful astronaut releases a bowling ball, of mass 𝑚 = 7.20 kg, into
circular orbit about Earth at an altitude ℎ of 350 m.

(a) What is the mechanical energy 𝐸 of the ball in its orbit?

The orbital radius is 𝑟 = 𝑅𝐸 + ℎ = 6370 km + 350 km = 6.72 × 106 m. The ball’s
mechanical energy is

𝐸 = −
𝐺𝑀𝑚

2𝑟

=
6.67 × 10−11 m3/kg ∙ s2 5.98 × 1024 kg 7.20 kg

2 6.72 × 106 m

= −214 MJ.
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7. Satellites: Orbits and Energy

(b) What is the mechanical energy 𝐸0 of the ball on the launch pad (before it, the
astronaut, and the spacecraft are launched)? From there to the orbit, what is the
change ∆𝐸 in the ball’s mechanical energy?

On the launch pad, the energy 𝐸0 of the ball is 𝐾0 + 𝑈0. 𝐾0 is tiny compared to 𝑈0
and therefore we approximate 𝐸0 by 𝑈0. We then write

𝐸0 ≈ 𝑈0 = −
𝐺𝑀𝑚

𝑅𝐸
= −

6.67 × 10−11 m3/kg ∙ s2 5.98 × 1024 kg 7.20 kg

6.37 × 106 m

= −451 MJ.

The increase in the mechanical energy of the ball from launch pad to orbit is

∆𝐸 = 𝐸 − 𝐸0 = −214 MJ − −451 MJ = 237 MJ.
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