Chapter 11

Rolling, Torque and Angular Momentum




1. Rolling as Translation and Rotation Combined

 We consider here smoothly rolling objects along a
straight surface; that is objects roll without slipping
or bouncing on the surface.

* Consider a bicycle wheel as it rolls along a street. /*
Both the center of mass O of the wheel and the

point P of contact with the street move forward at %

speed V.om- During a time interval t, both O and P
move forward by a distance s. 5N




1. Rolling as Translation and Rotation Combined

 The distance s is related to the angle 6 through
which rotate about the center of the wheel by

s = OR.
where R is the radius of the wheel. /
* We can relate v,y to the rotational speed w of the 5
wheel. Differentiating s with respect to time we get =
Veom = WR. $

* The rolling motion of a wheel is a combination of (1)
purely translational and (2) purely rotational 5 |
motions.




* In the purely rotational
motion, every point on the
wheel rotates about the
center with angular speed
w . Every point on the
outside edge of the wheel
has linear speed V.o -

* In the purely translational « The rolling motion of the

motion every point on the
wheel moves to the right
with speed V.o -

wheel is the combination
of the two motions. In this
combination, point T s
moving at speed 2vV.om,
where point P IS
stationary.

V=="Veom ‘com — 0




1. Rolling as Translation and Rotation Combined

e Rolling as Pure Rotation

Rolling can be viewed as pure rotation about an axis
passing through point P, perpendicular to the plane
of page, with angular speed w.

https://www.youtube.com/watch?v=hnjszE3NS9E

Rotation axis at P



https://www.youtube.com/watch?v=hnjszE3NS9E

1. Rolling as Translation and Rotation Combined

\.CH ECKPOINT 1

The rear wheel on a clown’s bicycle has twice the radius of the front wheel. (a) When
the bicycle 1s moving, is the linear speed at the very top of the rear wheel greater than,
less than, or the same as that of the very top of the front wheel? (b) Is the angular speed
of the rear wheel greater than, less than, or the same as that of the front wheel?

(a) Equal
(b) Less.




2. The Kinetic Energy of Rolling

* A rolling object has two types of kinetic energy: (1) a rotational kinetic
1 . . :
energy (Elcoma)z) due to its rotation about its center of mass and (2) a

. L 1 . .
translational kinetic energy (EMvczom) due to translation of its center of
mass. Therefore, the kinetic energy K of a rolling object is

1 T
K=§Icomw +§Mvcom.




3. The Forces of Rolling

Friction and Rolling

* A wheel that rolls at constant speed has no tendency to slide
at the point of contact P, and thus no frictional force acts
there. If a net force acts on the wheel, then it will have
acceleration d.,y, of the center of mass, and angular
acceleration a. These accelerations tend to make the wheel
slide at P. Thus, a frictional force must act on the wheel at
point P to oppose that tendency.

* If the wheel does not slide, the force is static frictional force
fs and the rolling is smooth. We can then relate d oy, to a by

differentiating V.o, = @R to get




3. The Forces of Rolling

Rolling Down a Ramp

* Consider the rolling object in the figure. We want to

find its acceleration a.om , down the ramp. We use
Newton’s second law in both its linear version (Fj et
= ma) and its angular version (Tpet = l):

Along the x axis:
fs —Mgsinf = Macon -
About an axis through the body’s center of mass:

Rfs = Icom@.




3. The Forces of Rolling

Rolling Down a Ramp

* Since the body is rolling smoothly, acomx = —aR.
Solving for acom  We get

gsin@

Acom,x =

- Icom
1+ VI R2

The frictional force is given by

acom,x

fs = —lcom R2
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3. The Forces of Rolling

\'CHECKPOINT 2

Disks A and B are identical and roll across a floor with equal speeds. Then disk A rolls
up an incline, reaching a maximum height /4, and disk B moves up an incline that 1s iden-
tical except that it 1s frictionless. Is the maximum height reached by disk B greater than,
less than, or equal to /4?

Less
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3. The Forces of Rolling

Example 1: A uniform ball, of mass M = 6.00 kg and
radius R, rolls smoothly from rest down a ramp at angle 6
= 30.0°.

(a) The ball descends a vertical height h = 1.20 m to reach
the bottom of the ramp. What is its speed at the bottom?

Conservation of mechanical energy (Er =E;) can be

written as
Kf-l_Uf:Kl_I_UU

or

1 2, L
Elcomw +§Mvcom +0=0+ Mgh
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3. The Forces of Rolling

Because the rolling is smooth, v.,;,; = WR. The moment of
. . .2 _—

inertial I.,,, Of a sold sphere is EMRZ. Substituting for w
and [.,y and solving for v, Yield

Veom = \/(10/7)gh
=./(10/7)(9.8 m/s2)(1.2 m) = 4.10?.

13




3. The Forces of Rolling

(b) What are the magnitude and direction of the frictional
force on the ball as it rolls down the ramp?
We need to calculate the acceleration a.qp, x first:
(9.837)sin30.0°
Acomx — — L 2/5 MR?2
MR?
(9857)sin30.0°  350m

2 - T T gz
1+§

Then,

l.oma 2
fs — comR;:om,x — _gMacom,x = 840 N.
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4. The Yo-Yo

* The Yo-Yo is similar to a rolling object down a ramp. The main
differences between the two are:

(3) The yo-yo rolls down a string at an angle 8 = 90°.

(1) f is replaced by the tension T.
(2) The yo-yo rolls on its axle of radius Ry.

* The downward acceleration of the yo-yo center of mass d.qom

is therefore
= — g K{

1+m. \'\P

MR2 _

acom




5. Torgue Revisited

* Now we expand the definition of torque to apply it to an
individual particle that moves along any path relative to
a fixed point, rather than a fixed axis. We therefore
write the torque as a vector T that can have any
direction.

* Consider a particle at a point A in an xy plane, having
the position vector 7 relative to the origin 0. The torque
T acting on the particle relative to the fixed point O is a
vector quantity defined as

T=71rXF.

O

Cross rinto F.
TorqueTis in the
positive z direction.

=




5. Torgue Revisited

 The direction of T is determined by the right had rule. 7 (=

- .
I (redrawn, with
tail at origin)

* The magnitude of T is ORS
T =rFsing,

where ¢ is the smaller angle between 7 and F.

We can also write ' i
T=rF, =1F, 7
where F, is the component of F perpendicular to 7 and o
r, isthe moment arm of F. 1N
AR
gl

Line of action of F




5. Torgue Revisited

\.CHECKPOINT 3

The position vector 7 of a particle points along the positive direction of a z axis. If
the torque on the particle 1s (a) zero, (b) in the negative direction of x, and (c) in the
negative direction of y,1n what direction is the force causing the torque?

(a) +k or —k.
(b) +].
(c) —1.
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5. Torgue Revisited

Example 2: In the figure, three forces, each of magnitude
2.0 N, act on a particle. The particle is in the xz plane at
point A given by position vector , where r = 3 Om and 6

= 30°. Force F1 is paraIIeI to the x axis, force Fz is parallel

to the z axis, and force F3 is parallel to the y axis. What is
the torque, about the origin O, due to each force?

The magnitudes of the torques are
T, = rF;sing; = (3.0 m)(2.0 N) sin150° = 3.0 N - m.
7, = rF,sin¢, = (3.0 m)(2.0 N)sin120° = 5.2 N - m.
T3 = rF3sing; = (3.0 m)(2.0 N)sin90° = 6.0 N - m.
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5. Torgue Revisited

2

The directions of
the torques are
shown below:
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6. Angular Momentum

* We discuss now the angular counterpart of the linear

momentum. The angular momentum ¢ of a particle A?
of mass m and velocity v (and p = mv) with respect
to the origin O is a vector quantity defined as

p (redrawn, with
tail at origin)

P =7xB=m@FxXD),
where 7 is the position vector of the particle with
respect to 0. As the particle moves, 7 rotates around

0. Note that the particle does not have to rotate *
around O to have angular momentum about O.

The Sl unit of angular momentum is kg - m?/s, orJ - s.




6. Angular Momentum

« The direction of ¢ is determined by the right hand rule.

* The magnitude of £ is
£ =rmvsing,
where ¢ is the smaller angle between 7 and p. 1

 \WWe can rewrite £ as

~1

L =1rp, =mrv,,

0O

where p, and v, are the components of p and v
perpendicular to 7, respectively. We can also write

N
— ;
r r

ol
f=rp=rmy, 7 A

Extension of

Where 7, is the perpendicular distance between O and *
the extension of p.




6. Angular Momentum

’CHECKPOINT4 G _ e
In part a of the figure, particles // ]ﬁ AN l
I and 2 move around point O [/ 77 TN \\n
in circles with radii 2 m and 4 : { Oe } | O
m. In part b, particles 3 and ' A .
4 travel along straight lines at \qi';f /, ____________ ;_D____
perpendicular distances of 4 m SSe___-7
and 2 m from point O. Particle (a) ()

5 moves directly away from O.

All five particles have the same mass and the same constant speed. (a) Rank the parti-
cles according to the magnitudes of their angular momentum about point O, greatest
first. (b) Which particles have negative angular momentum about point O?

(a) 1 & 3tie, 2 & 4 tie, 5.
(b) 2 and 3.

23




6. Angular Momentum

Example 3: The figure shows an overhead view of two
particles moving at constant momentum along horizontal
paths. Particle 1, with momentum magnitude p,
= 5.0 kg m/s, has position vector 7; and will pass 2.0 m
from point O. Particle 2, with momentum magnitude p,
= 2.0 kg m/s, has position vector 7, and will pass 4.0 m
from point 0. What are the magnitude and direction of
the net angular momentum about point O of the two
particle system?

£, =1r.4p; = (2.0m)(5.0kg-m/s) = 10 kg - m?/s.
m
£, = =150, = —(4.0 m) (2.0 kg-?) = —8.0 kg - m?/s.
L=4%,+4%,=20kg -m?/s.

24




/. Newton’s Second Law in Angular Form

* The angular version of Newton’s second law is
i d?
Tnet = —.
net dt
See your text for the proof.

* In words, the vector sum of all torques acting on a particle is equal to the time
rate of change of angular momentum of that particle.

- Both 7 and # here are defined with respect to the same point, usually the
origin.




/. Newton’s Second Law in Angular Form

\'CH ECKPOINT 5

The figure shows the position vector 7 of a particle at a certain instant, and four choices
for the direction of a force that is to accelerate the particle. All four choices lie in the xy
plane. (a) Rank the choices according to the magnitude of the time rate of change (d {/f’df)
they produce in the angular momentum of the particle about point O, greatest first. (b)
Which choice results in a negative rate of change about O?

O

(a) 3,1, 2 &4tie. (b) 3.

26




/. Newton’s Second Law in Angular Form

Example 4: In the figure, a penguin of mass m falls
from rest at point A, a horizontal distance D from the
origin O of an xyz coordinate system. (The positive
direction of the z axis is directly outward from the
plane of the figure.)

(a) What is the angular momentum ¢ of the falling
penguin about O?

£ is given by
£ =r,mv = Dmgt.

The direction of ¢ is into the page , by the right hand
rule.

27
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/. Newton’s Second Law in Angular Form

(b) About the origin O, what is the torque T on the
penguin due to the gravitational force F;?

T is given by
T =71, F; = Dmg.

The direction of T is into the page , by the right hand
rule. Additionally, we can find T by

_df _ d(Dmgt)
S dt dt

= Dmg.

T

28
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8. The angular Momentum of a System of
Particles

* The total angular momentum L of a system of particles is the vector sum of

the angular momenta € of the individual particles:
n

?;.

i=1
e [ can change with time due to the changes of the angular momenta ?i of
individual particles:

dz n d?l n R R
_— = —_— = T . = T ,
dt 2i=1 dt 2i=1 nett net

where Tyet; is the net torque on the ith particle and T is the net external
torque.

Z=?1+?1+---+?n:z




8. The angular Momentum of a System of
Particles

* Newton’s second law in angular form for a system of particles:

-

o dlI
Thet — E )

In words, then net external torque acting on a system of particles is equal to
the time rate of change of the system’s total angular momentum L.

* Remember that torques and angular momenta here are measured relative to
the same origin.




9. The angular Momentum of a Rigid Rotating
Body about a Fixed Axis

* Consider a rigid body that rotates about the z axis with constant angular
speed w. The angular momentum

L =lw,

where [ is the moment of inertia of the bodly.




9. The angular Momentum of a Rigid Rotating

Body about a Fixed Axis

More Corresponding Variables and Relations for Translational

and Rotational Motion

Translational Rotational
— — — =
Force F Torque T(=7 X F)
. 3 — —
Linear momentum 7l Angular momentum ( (=7 %Xp)
. - — - -
Linear momentum®” P(=2p);) Angular momentum? L(=2{))
. oy —_—
Linear momentum® P=Mv,, Angular momentum¢ L=lIw
—= —
) A s dP ) A . dL
Newton’s second law Fpet = —— Newton’s second law Toet =
dt dt
. . d n . . d r
Conservation law P = a constant | Conservation law [. = a constant

32




9. The angular Momentum of a Rigid Rotating
Body about a Fixed Axis

\.CHECKPOINT 6

In the figure, a disk, a Disk Hoop Sphere
hoop, and a solid sphere

are made to spin about 7 7 7

fixed central axes (like a

top) by means of strings wrapped around them, with the strings producing the same
constant tangential force F on all three objects. The three objects have the same mass
and radius, and they are initially stationary. Rank the objects according to (a) their an-
gular momentum about their central axes and (b) their angular speed, greatest first,
when the strings have been pulled for a certain time +.

(a) All tie.
(b) Sphere, Disk, Hoop.
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10. Conservation of Angular Momentum

* We now consider a third law of conservation, the conservation of annual

momentum. If no external net torque acts on a system (Tpet = 0), then dZ/dt
=0, or

N
L = a constant.
* This is the law of conservation of angular momentum. In words,

(net angular momentum) _ (net angular momentum)

at some inital time t; at some inital time t;
or

zi —_ Zf.




10. Conservation of Angular Momentum

* These two equations are vector equation; they have three components
corresponding to the conservation of angular momentum in three mutually
perpendicular directions. If the component of T,.¢ is zero along a certain axis,
then the component of the angular momentum of the system along that axis
cannot change.

* If an isolated body that rotates about the z axis changes its rotational inertia
about tat axis by redistributing its mass then the angular speed of the body
will change so that its angular momentum stays the same:

Iia)i = If(l)f.




10. Conservation of Angular Momentum

* Consider the demonstration shown in
figure. The stool rotates at angular
speed w; while the student’s arms are ®
outstretched. As he pulls his arms, )
decreasing the value of his moment i | s
of inertia from I; to I his rotational & e <
speed increases from w; to wys so that ’ A T
Iia)i = If(l)f.

Rotation axis
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10. Conservation of Angular Momentum

\.CH ECKPOINT 7

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If
the beetle crawls toward the center of the disk, do the following (each relative to the
central axis) increase, decrease, or remain the same for the beetle—disk system: (a)
rotational inertia, (b) angular momentum, and (c¢) angular speed?

(a) Decreases.
(b) Remains the same.

(c) Increases.
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10. Conservation of Angular Momentum

Example 5: The figure shows a student, sitting on a stool
that can rotate freely about a vertical axis. The student,
initially at rest, is holding a bicycle wheel whose rotational
inertia I,,;, about its central axis is 1.2 kg - m?. The wheel
is rotating at an angular counterclockwise speed w,,;, of
3.9 rev/s; as seen from overhead. The axis of the wheel is
vertical, and the angular momentum of the wheel points
vertically upward. The student now inverts the wheel so
thzi:c it is rotating clockwise. Its angular momentum is now

— L,,n. The inversion results in the student, the stool, and
the wheel’s center rotating together as a composite rigid
body about the stool’s rotation axis, with rotational inertia
I, = 6.8kg-m?. With what angular speed w;, and in
what direction does the composite body rotate after the
inversion of the wheel?

—
“w,
@ I “wh
Q ()] J

o ‘:>(') wh

| ———— St

0O < ~>' :

»; l /"’
& U 2 < U 2
SN O SRS SN AN SN SNRAES S




10. Conservation of Angular Momentum

The total conservation of the system is conserved:

Lpi+ Lwni = Lp s+ Luny T,
?Truh _Th
or e L L]
\ N J \ @,
Lb,f = Lp;+ Lyn; — Lwh,f fubw%
=0+ Lyp,; — (_Lwh,i) = 2Lyp ;- Jr
Using that L = [w and solving for w;, and substituting we %’ J
find e
21,n
Wp = I—wwh
b
_2(1.2kg mz)( C ) rev T?”‘ - L: J,—Th
- 6.8 kg ) mz S B S Inital Final
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10. Conservation of Angular Momentum

Example 6: In the figure, a bug with mass m rides on a
disk of mass M = 6.00m and radius R. The disk
rotates like a merry-go-round around its central axis
at angular speed w; = 1.50 rad/s. The bug is initially
at radius r = 0.80 R, but then it crawls out to the
rim of the disk. Treat the bug as a particle. What then
is the angular speed?

Because the angular momentum of the bug-disk
system is conserved, we can write

Rotation axis
Iia)i = If(Uf.

L =1;+1 -=1MR2+mr2
i d b,i 2 .
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10. Conservation of Angular Momentum

Ic=1;+1 =1MR2+mR2
f d bf =5 :

Solving for w¢ and substituting yield

[ 1/2 MR? + mr?
Ot LY T 12 MRZ + mR2 !
~ 1/2(6.00m)R* + m(0.80R)? rad
- 1/2(6.00m)R? + mR? ( )
rad

= 1.36—.
S

Rotation axis
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