
Chapter 10
Rotation
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1. The Rotational Variables

• In the previous chapters we discussed only translational
motion. We now discuss another type of motion: rotation.

• We examine the rotation of a rigid body about a fixed axis.
A rigid body is a body that can rotate with all its parts
locked together and without change in its shape. A fixed
axis means that the rotation occurs about an axis that
does not move.

• The figure shows a rigid body rotating about a fixed axis,
called the axis of rotation or rotational axis. Every point
of the body moves in a circle whose center lies on the axis
or rotation, and every point moves through the same
angle during a particular time interval.
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1. The Rotational Variables

• We deal now with the angular equivalence of the linear
position, displacement, velocity and acceleration.

• Angular Position:

The figure shows a reference line, fixed in the body,
perpendicular to the rotation axis and rotating with the
body. The angular position of this line is the angle it
makes with a fixed direction, which we take as the zero
angular position.

In the figure, the angular position 𝜃 is measured relative
to the positive direction of the 𝑥 axis. From geometry,

𝜃 =
𝑠

𝑟
.
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1. The Rotational Variables

• Angular Position:

Here 𝑠 is the length of a circular arc that extends from the
𝑥 axis to the reference line, and 𝑟 is the radius of the
circle.

𝜃 is in radians (dimensionless). If the reference line makes
more that one revolution then 𝜃 > 2𝜋.

We can know everything about the rotation of an object if
we know 𝜃 𝑡 , the angular position of the body’s
reference line as a function of time.
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1. The Rotational Variables

• Angular Displacement:

If a body rotates about the rotation axis, changing the
angular position of the reference line from 𝜃1 to 𝜃2, the
body undergoes an angular displacement ∆𝜃 given by

∆𝜃 = 𝜃2 − 𝜃1.

In addition to the rigid body, this definition holds for every
particle within it.

Just like translational displacement, ∆𝜃 is either positive
or negative, according to the following rule: Angular
displacement in the counterclockwise direction is positive,
and in the clockwise direction is negative.
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1. The Rotational Variables

(a) ∆𝜃 = 5 rad − −3 rad = 8 rad.

(b) ∆𝜃 = −7 rad − −3 rad = −4 rad.

(c) ∆𝜃 = −3 rad − 7 rad = −10 rad.

(b) and (c) correspond to negative angular displacements.
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1. The Rotational Variables

• Angular Velocity:

Suppose the rotating body is at angular position 𝜃1 at time
𝑡1 and at angular position 𝜃2 at time 𝑡2. The average
angular velocity of the of the body is defined as

𝜔𝑎𝑣𝑔 =
𝜃2 − 𝜃1
𝑡2 − 𝑡1

=
∆𝜃

∆𝑡
.

The instantaneous angular velocity 𝜔 is defined as

𝜔 = lim
∆𝑡→0

∆𝜃

∆𝑡
=
𝑑𝜃

𝑑𝑡
.

The commonly used unit of angular velocity is radian per
second (rad/s) or the revolution per second (rev/s) .
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1. The Rotational Variables

• Angular Velocity:

Another common unit for angular velocity is the revolution per minute (rpm).

The angular velocity 𝜔 is positive if the body is rotating counterclockwise and
negative if the body is rotating clockwise. The magnitude of an angular velocity is
called the angular speed.

• Angular Acceleration:

Let 𝜔2 and 𝜔1 be the angular velocities of a body at times 𝑡2 and 𝑡1. The average
angular acceleration 𝛼𝑎𝑣𝑔 of the body is defied as

𝛼𝑎𝑣𝑔 =
𝜔2 − 𝜔1

𝑡2 − 𝑡1
=
∆𝜔

∆𝑡
.
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1. The Rotational Variables

• Angular Acceleration:

The (instantaneous) angular acceleration 𝛼 is defined as

𝛼 = lim
∆𝑡→0

∆𝜔

∆𝑡
=
𝑑𝜔

𝑑𝑡
.

Angular acceleration is commonly measured in radians per second-squared (rad
/s2) or revolution per second squared (rev/s2).
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1. The Center of Mass

Example 1: The disk in the figure is rotating
about its central axis like a merry-go-round. The
angular position 𝜃 𝑡 of a reference line on the
disk is given by

𝜃 𝑡 = −1.00 − 0.600𝑡 + 0.25𝑡2,

with 𝑡 in seconds, 𝜃 in radians, and the zero
angular positions indicated in the figure.

(a) Graph the angular position of the disk versus
time from 𝑡 = −3.0 s to 𝑡 = 5.4 s. Sketch the
disk and its angular position reference line at 𝑡
= −2.0 s , 0 s, and 4.0 s, and when the curve
crosses the 𝑡 axis.
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1. The Center of Mass
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1. The Center of Mass

(b) Graph the angular velocity 𝜔 of the
disk versus time from 𝑡 = −3.0 s to 𝑡
= 6.0 s. Sketch the disk and indicate
the direction of turning and the sign of
𝜔 at 𝑡 = −2.0 s, 4.0 s, and 𝑡min.

𝜔 =
𝑑𝜃

𝑑𝑡
= −0.600 + 0.50𝑡.
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1. The Center of Mass

Example 2: The angular acceleration of an object is

𝛼 = 5𝑡3 − 4𝑡.

with 𝑡 in seconds and a in radians per second-squared. At 𝑡 = 0, the top has
angular velocity 5 rad/s, and a reference line on it is at angular position 𝜃 = 2 rad.

(a) Obtain an expression for the angular velocity 𝜔 𝑡 of the object.

𝑑𝜔 = 𝛼 𝑑𝑡,

and therefore,

න𝑑𝜔 = න𝛼 𝑑𝑡 ,

or 𝜔 = ׬ 5𝑡3 − 4𝑡 𝑑𝑡 =
5

4
𝑡4 − 2𝑡2 + 𝐶.
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1. The Center of Mass

To find 𝐶 we use that 𝜔 0 = 5 rad/s, or

or 𝜔 0 =
5

4
0 4 − 2 0 2 + 𝐶 = 5 rad/s.

Therefore, 𝐶 = 5 rad/s and

𝜔 =
5

4
𝑡4 − 2𝑡2 + 5.

(b) Obtain an expression for the angular position 𝜃 𝑡 of the object.

𝑑𝜃 = 𝜔𝑑𝑡,

and therefore,

න𝑑𝜃 = න𝜔 𝑑𝑡 ,
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1. The Center of Mass

or

𝜃 = න
5

4
𝑡4 + 2𝑡2 + 5 𝑑𝑡 =

1

4
𝑡5 −

2

3
𝑡3 + 5𝑡 + 𝐶′.

To find 𝐶′ we use that 𝜃 0 = 2 rad, or

or 𝜃 0 =
1

4
0 5 −

2

3
0 3 + 5 0 + 𝐶′ = 2 rad/s.

Therefore, 𝐶′ = 2 rad/s and

𝜃 =
1

4
𝑡5 −

2

3
𝑡3 + 5𝑡 + 2.
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2. Rotation with Constant Angular Acceleration
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2. Rotation with Constant Angular Acceleration

Example 3: A disk rotates at constant angular acceleration 𝛼 = 0.35 rad/s2. At
time 𝑡 = 0, it has an angular velocity of 𝜔0 = −0.46 rad/s and a reference line on
it at the angular position 𝜃0 = 0.

(a) At what time after 𝑡 = 0 is the reference line at the angular position 𝜃
= 5.0 rev?

We choose the relation

𝜃 − 𝜃0 = 𝜔0𝑡 +
1

2
𝛼𝑡2.

It then becomes

5.0 2𝜋 rad = −0.46 rad/s 𝑡 +
1

2
0.35 rad/s2 𝑡2.

Note that 5.0 rev = 10𝜋 rad.
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2. Rotation with Constant Angular Acceleration

Solving for 𝑡 we get 𝑡 = 32 s.

(b) At what time 𝑡 does the disk momentarily stop?

We choose the equation

𝜔 = 𝜔0 + 𝛼𝑡,

with 𝜔 = 0. We then get

𝑡 = −
𝜔0

𝛼
= −

−0.46
rad
s

0.35
rad
s2

= 13 s.
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2. Rotation with Constant Angular Acceleration

Example 4: The angular velocity of a rotating cylinder is decreased from 3.40 rad
/s to 2.00 rad/s in 20 rev, at constant acceleration.

(a) What is the constant angular acceleration during this decrease in angular
speed?

Using the relation

𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0 ,

we write

𝛼 =
𝜔2 − 𝜔0

2

2 𝜃 − 𝜃0
=

2.00 rad/s 2 − 3.40 rad/s 2

2 40π rad
= −0.0301

rad

s2
.
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2. Rotation with Constant Angular Acceleration

(b) How much time did the speed decrease take?

𝑡 =
𝜔 − 𝜔0

𝛼
=
2.00

rad
s − 3.40

rad
s

−0.0301
rad
s2

= 46.5 s.
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3. Relating the Linear and Angular Variables

• We wan to relate the linear variables 𝑠, 𝑣 and 𝑎 of a point in a rotating body to
the angular variables 𝜃, 𝜔 and 𝛼 for that body.

• The two sets of variables are related by 𝑟, the perpendicular distance of the point
from the rotating axis.

• The Position:

If a reference line on a body rotates through an angle 𝜃, a point within the body
at a position 𝑟 from the rotation axis moves a distance 𝑠 along a circular arc,
where

𝑠 = 𝜃𝑟.
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3. Relating the Linear and Angular Variables

• The Speed:

Differentiating 𝑠 = 𝜃𝑟 with respect to time-with 𝑟 held constant-gives

𝑑𝑠

𝑑𝑡
=
𝑑𝜃

𝑑𝑡
𝑟,

or
𝑣 = 𝜔𝑟.

Since 𝜔 is the same for all points on the rotating body, points at a greater radius 𝑟 have 
greater linear speed 𝑣. The velocity vector Ԧ𝑣 is always tangent to the circular paths.

For constant 𝜔, the period of revolution 𝑇 for the motion of each point and for the rigid 
body itself is given by

𝑇 =
2𝜋𝑟

𝑣
=
2𝜋

𝜔
.
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3. Relating the Linear and Angular Variables

• The Speed:

The relation 𝑇 = 2𝜋/𝜔 says that the time for one revolution is the angular 
distance 2𝜋 rad (1 rev) divided by the angular speed. 

• The Acceleration:

Differentiating 𝑣 = 𝜔𝑟 with respect to time-with 𝑟 held constant-leads to

𝑑𝑣

𝑑𝑡
=
𝑑𝜔

𝑑𝑡
𝑟.

𝑑𝑣/𝑑𝑡 represents only the part of the linear acceleration that is responsible for 
changing the magnitude 𝑣 of the linear velocity Ԧ𝑣. That part of linear acceleration 
is tangent to the circular path.
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3. Relating the Linear and Angular Variables

• The Acceleration:

We call it the tangential component 𝑎𝑡 of the linear acceleration and write it

𝑎𝑡 = 𝛼𝑟.

The radial component 𝑎𝑟 of the linear acceleration (from Ch. 4) can be written as

𝑎𝑟 =
𝑣2

𝑟
= 𝜔2𝑟.

Note that 𝑎𝑟 is not zero even when 𝛼 = 0.
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3. Relating the Linear and Angular Variables

CHECKPOINT 3

A cat rides the rim of a rotating merry-go-round. If the angular speed of this system
(merry-go-round + cat) is constant, does the cat have (a) radial acceleration and (b)
tangential acceleration? If 𝜔 is decreasing, does the cat have (c) radial acceleration
and (d) tangential acceleration?

25

(a) Yes.
(b) No.
(c) Yes.
(d) Yes.



2. Rotation with Constant Angular Acceleration

Example 5: A roller coaster, initially at rest,
accelerates at 𝑔 along a horizontal track that
begins as a circular arc at the loading point and
then, at point 𝑃, continues along a tangent to
the arc. What angle 𝜃𝑃 should the arc subtend
so that the coaster’s acceleration 𝑎 is 4𝑔 at
point 𝑃?

The coaster acceleration is given by

𝑎 = 𝑎𝑡
2 + 𝑎𝑟

2,

since 𝑎𝑡 and 𝑎𝑟 are perpendicular. 𝑎𝑡 = g and
we need to find express 𝑎𝑟 in terms of 𝜃𝑃.
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2. Rotation with Constant Angular Acceleration

Using the relation

𝜔2 = 𝜔0
2 + 2𝛼 𝜃 − 𝜃0 ,

we find that

𝜔2 = 2𝛼𝜃𝑃 =
2𝑎𝑡𝜃𝑃
𝑟

.

We know that 𝑎𝑟 = 𝜔2𝑟. Therefore,

𝑎𝑟 = 2𝑎𝑡𝜃𝑃.

Substituting in the expression 𝑎 = 𝑎𝑡
2 + 𝑎𝑟

2

leads to

4𝑔 = 𝑔2 + 2𝑔𝜃𝑃
2,

which yields 𝜃𝑃 = 1.94 rad or 111°.
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4. Kinetic Energy of Rotation

• A rotating body has kinetic energy equal to the kinetic energies of the particles
constituting the body. We therefore write

𝐾 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 +
1

2
𝑚3𝑣3

2 +⋯

=෍
1

2
𝑚𝑖𝑣𝑖

2.

Here 𝑚𝑖 and 𝑣𝑖 are the mass and speed of the 𝑖th particle, respectively.

We can replace 𝑣𝑖 by 𝜔𝑟𝑖 and write

𝐾 =෍
1

2
𝑚𝑖 𝜔𝑟𝑖

2 =
1

2
෍𝑚𝑖𝑟𝑖

2 𝜔2.

Recall that 𝜔 is the same for all particle.
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4. Kinetic Energy of Rotation

• The quantity in the parentheses is a measure of how the mass of the body is
distributed about its rotation axis. That quantity is called the rotational inertial
(or moment of inertia) 𝐼 of the body with respect to the axis of rotation.

• We may now write

𝐼 =෍𝑚𝑖𝑟𝑖
2 ,

and

𝐾 =
1

2
𝐼𝜔2.

The SI unit for 𝐼 is (kg ∙ m2).
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4. Kinetic Energy of Rotation

In all three cases 𝐼 = 𝑚𝑟2 = 36 kg ∙ m2.
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5. Calculating the Rotational Inertia

• If a rigid body consists of a few particles, we can calculate its rotational inertia
about a given rotation axis by 𝐼 = σ𝑚𝑖𝑟𝑖

2.

• If a rigid body consists of a great number of particles we replace the summation
by the integral

𝐼 = න𝑟2𝑑𝑚 .

• The table in the next slide gives the results of such integration for nine common 
body shapes and the indicated axes of rotation.
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5. Calculating the Rotational Inertia

• Parallel-Axis Theorem:

If we know the moment of inertia 𝐼com of a body of
mass 𝑀 about an axis through its center of mass
then we can find its moment of inertia 𝐼 about any
other parallel axis. If ℎ is the perpendicular
distance between the given axis and the axis
though the center of mass then 𝐼 and 𝐼com are
related by

𝐼 = 𝐼com +𝑀ℎ2.

This equation is know as the parallel-axis theorem.

See you textbook for the proof.
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5. Calculating the Rotational Inertia

𝐼 = 𝐼com +𝑀ℎ2.

1, 2, 4, 3.
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5. Calculating the Rotational Inertia

Example 6: The figure shows a rigid body consisting
of two particles of mass 𝑚 connected by a rod of
length 𝐿 and negligible mass.

(a) What is the rotational inertia 𝐼com about an axis
through the center of mass, perpendicular to the
rod as shown?

𝐼 =෍𝑚𝑖𝑟𝑖
2 = 𝑚

1

2
𝐿

2

+𝑚
1

2
𝐿

2

=
1

2
𝑚𝐿2
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5. Calculating the Rotational Inertia

(b) What is the rotational inertia 𝐼 of the body about
an axis through the left end of the rod and parallel
to the first axis?

𝐼 =෍𝑚𝑖𝑟𝑖
2 = 𝑚 0 2 +𝑚 𝐿 2 = 𝑚𝐿2.

Alternatively, using the parallel-axis theorem

𝐼 = 𝐼com +𝑀ℎ2 =
1

2
𝑚𝐿2 + 2𝑚

1

2
𝐿

2

= 𝑚𝐿2.
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5. Calculating the Rotational Inertia

Example 7: Find the rotational kinetic energy of a solid steel disk of mass 𝑀
= 272 kg and radius 𝑅 = 38.0 cm, rotating at 14000 rev/min.

The moment of inertia of the disk is

𝐼 =
1

2
𝑀𝑅2 =

1

2
272 kg 0.38 2 = 19.64 kg ∙ m2.

The rotational speed of the disk is

𝜔 = 14000
rev

min
×
1min

60 s
×
2π rad

1 rev
= 1.466 × 103

rad

s
.

The kinetic energy is then

𝐾 =
1

2
𝐼𝜔2 =

1

2
19.64 kg ∙ m2 1.466 × 103

rad

s

2

= 2.1 × 107 J.
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6. Torque

• Consider the situation shown in figure. The force Ԧ𝐹
has a radial component 𝐹𝑟, pointing along Ԧ𝑟 and a
tangential component 𝐹𝑡 = 𝐹 sin𝜙, perpendicular
to Ԧ𝐹.

• The ability to rotate the object depends only on the
tangential component 𝐹𝑡 . It also depends on how
far from the rotation axis the force is applied. We
therefore define the torque

𝜏 = 𝑟𝐹 sin𝜙 .
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6. Torque

• We can also write that 𝜏 = 𝑟 𝐹 sin𝜙 = 𝑟𝐹𝑡 or 𝜏
= 𝑟 sin𝜙 𝐹 = 𝑟⊥𝐹. 𝑟⊥ is called the moment arm
of Ԧ𝐹, and the extended line between 𝑃 and the
moment of arm is called the line of action of Ԧ𝐹.

• The SI unit for torque is N ∙ m.

• Torques obey the superposition principle: When
several torques act on a body the net torque 𝜏net
(or resultant torque) is the sum of the individual
torques.
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6. Torque

Ԧ𝐹1 & Ԧ𝐹3, Ԧ𝐹4, Ԧ𝐹2 & Ԧ𝐹5.
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7. Newton’s Second Law for Rotation

• Newton’s second law for the particle shown in the figure
for components along the tangential direction reads

𝐹𝑡 = 𝑚𝑎𝑡 ,

which can be rewritten as

𝑟𝐹𝑡 = 𝑚𝑟2
𝑎𝑡
𝑟
.

Using 𝑟𝐹𝑡 = 𝜏, 𝑚𝑟2 = 𝐼 and
𝑎𝑡

𝑟
= 𝛼 we get that

𝜏 = 𝐼𝛼.

This result is valid for any rigid body. When there are
several forces applied to the particle we have

𝜏net = 𝐼𝛼.
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7. Newton’s Second Law for Rotation

(a) Down.

(b) Less.
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7. Newton’s Second Law for Rotation

Example 8: The figure shows a uniform disk, with
mass 𝑀 = 2.5 kg and radius R = 20 cm, mounted
on a fixed horizontal axle. A block with mass m
= 1.2 kg hangs from a massless cord that is
wrapped around the rim of the disk. Find the
acceleration of the falling block, the angular
acceleration of the disk, and the tension in the
cord. The cord does not slip, and there is no
friction at the axle.

Newton’s second law along the vertical y axis
(𝐹𝑛𝑒𝑡,𝑦 = 𝑚𝑎𝑦) gives

𝑇 −𝑚𝑔 = 𝑚𝑎𝑦

43



7. Newton’s Second Law for Rotation

𝑇 −𝑚𝑔 = 𝑚𝑎𝑦. (1)

Newton’s second for the pulley (𝜏𝑛𝑒𝑡 = 𝐼𝛼) reads

−𝑅𝑇 =
1

2
𝑀𝑅2 𝛼 .

Using 𝑎𝑦 = 𝛼𝑅 we rewrite this expression as

𝑇 = −
1

2
𝑀𝑎𝑦.

Combining this result with Eq. (1) we get that

𝑎𝑦 = −𝑔
2𝑚

𝑀 + 2𝑚
= −𝑔

2 1.2 kg

2.5 kg + 1.2 kg
= −4.8

m

s2
.
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7. Newton’s Second Law for Rotation

Substituting in the expression for 𝑇 we get

𝑇 = −
1

2
𝑀𝑎𝑦 = −

1

2
2.5 kg −4.8

m

s2
= 6.0 N.

Finally, 𝛼 is given by

𝛼 =
𝑎𝑦
𝑅

=
−4.8

m
s2

0.20 m
= −24

rad

s
.
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8. Work and Rotational Energy

• When a torque accelerates a rigid body in rotation about a fixed axis, the torque

does work 𝑊 on the body. The rotational kinetic energy 𝐾 =
1

2
𝐼𝜔2 of the body

can change. If that is the only energy of the body that changes then we can relate
the change Δ𝐾 in kinetic energy to the work 𝑊 with the work-kinetic energy
theorem:

Δ𝐾 = 𝐾𝑓 − 𝐾𝑖 =
1

2
𝐼𝜔𝑓

2 −
1

2
𝐼𝜔𝑖

2.

• The work due to a torque 𝜏 is given by

𝑊 = න
𝜃𝑖

𝜃𝑓

𝜏 𝑑𝜃 ,

where 𝜃𝑓 and 𝜃𝑖 are the final and initial angular positions, respectively.
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8. Work and Rotational Energy

• When the torque is constant the previous expression for work gives

𝑊 = 𝜏න
𝜃𝑖

𝜃𝑓

𝑑𝜃 = 𝜏 𝜃𝑓 − 𝜃𝑖 .

• The rate at which the work is done is the power, which we can find with the
rotational equivalent

𝑃 =
𝑑𝑊

𝑑𝑡
= 𝜏𝜔.
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8. Work and Rotational Energy

Example 9: Let the disk in the figure start from
rest at time 𝑡 = 0 and also let the tension in the
massless cord be 6.0 and the angular acceleration
of the disk be −24 rad/s2. What is its rotational
kinetic energy 𝐾 at 𝑡 = 2.5 s?

In order to find 𝐾 we find 𝜔 at 𝑡 = 2.5 s:

𝜔 = 𝜔0 + 𝛼𝑡 = 𝛼𝑡.

𝐾 =
1

2

1

2
𝑀𝑅2 𝛼𝑡 2 =

1

4
𝑀 𝑅𝛼𝑡 2

=
1

4
2.0 kg 0.20 m −24 rad/s2 2.5 s 2

= 90 J.
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8. Work and Rotational Energy

We can also get this answer by finding the disk’s kinetic energy from the work done on the
disk:

𝐾𝑓 = 𝐾𝑖 +𝑊 = 𝑊 = 𝜏 𝜃𝑓 − 𝜃𝑖 .

We know that 𝜏 = −𝑅𝑇, and

𝜃𝑓 − 𝜃𝑖 = 𝜔0𝑡 +
1

2
𝛼𝑡2 =

1

2
𝛼𝑡2.

We now can write

𝐾𝑓 = −
1

2
𝑅𝑇𝛼𝑡2

= −
1

2
0.20 m 6.0 N −24

rad

s2
2.5 s 2

= 90 J.
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