CH 1 MEASUREMENT

Abdallah M. Al Zahrani

2. Measuring Things

- We discover physics by learning how to measure physical quantities (length, mass, temperature, etc).
- A quantity is measured in its own unit, by comparison with a standard.
- The unit is a unique name we assign to measures of that quantity-for example, meter (m) for the quantity length.
- There are so many physical quantities! Luckily, not all of them are independent; for example, speed = distance/time.
- A few physical quantities were chosen (by an international agreement) to define all other quantities. They are called base quantities.
- Base units and base standards are associated to the base quantities.

3. The International System of Units

- In 1971, seven base quantities were chosen as the basis of the International System of Units (SI).
- In Phys101, three SI base quantities are used.
- The units for all other quantities can be

Units for Three SI Base Quantities

Quantity	Unit Name	Unit Symbol
Length	meter	m
Time	second	s
Mass	kilogram	kg

$$
1 \mathrm{watt}=1 \mathrm{~W}=1 \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{3}}
$$

3. The International System of Units

- Very large and very small quantities can be suitably expressed in the scientific notation:

$$
\begin{aligned}
& 4530000000=4.53 \times 10^{9} \\
& 0.000000013=1.3 \times 10^{-8}
\end{aligned}
$$

- Sometimes unit prefixes are used:
4.53×10^{9} watts $=4.53$ gegawatts $=4.53 \mathrm{GW}$
$13 \times 10^{-9} s=13$ nanoseconds $=13 \mathrm{~ns}$

Prefixes for SI Units

Factor	Prefix ${ }^{a}$	Symbol
10^{24}	yotta-	Y
10^{21}	zetta-	Z
10^{18}	exa-	E
10^{15}	peta-	P
10^{12}	tera-	T
10^{9}	giga-	G
10^{6}	mega-	M
10^{3}	kilo-	k
10^{2}	hecto-	h
10^{1}	deka-	da
Factor	Prefix ${ }^{a}$	Symbol
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m
10^{-6}	micro-	μ
10^{-9}	nano-	n
10^{-12}	pico-	p
10^{-15}	femto-	f
10^{-18}	atto-	a
10^{-21}	zepto-	Z
10^{-24}	yocto-	y

4. Changing Units

- Chain-link conversion: Multiply a measurement by a conversion factor equal to unity so that only the desired units remain. For example:

$$
\begin{aligned}
200 \mathrm{~km} & =200 \mathrm{~km} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=2.00 \times 10^{5} \mathrm{~m} \\
1 \mathrm{~h} & =1 \mathrm{~h} \times \frac{60 \mathrm{~min}}{1 \mathrm{~h}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=3600 \mathrm{~s} \\
1 \frac{\mathrm{~m}}{\mathrm{~s}} & =1 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{3600 \mathrm{~s}}{1 \mathrm{~h}}=\frac{18}{5} \frac{\mathrm{~km}}{\mathrm{~h}}
\end{aligned}
$$

5. Length

- The SI unit of length is meter (m).
- A meter is the distance travelled by light in vacuum in a time interval of $1 / 299792458$ of a second.
The speed of light c is

$$
c=299792458 \mathrm{~m} / \mathrm{s} .
$$

6. Time

- The SI unit of time is second (s).
- One second is the time taken by 9192631770 oscillations of the light (of a specified wavelength) emitted by a cesium-133 atom.

7. Mass

- The SI unit of mass is kilogram (kg).
- The standard kilogram is the mass of a platinum-iridium cylinder 3.9 cm in height and in diameter.

7. Mass

- A second mass standard: The carbon-12 atom has been assigned a mass of 12 atomic mass units (u), where

$$
1 \mathrm{u}=1.66053886 \pm 10 \times 10^{-27} \mathrm{~kg}
$$

- Density: The density ρ of an object of mass m and volume V is defined as

$$
\rho=\frac{m}{V}
$$

Problems

-12 The fastest growing plant on record is a Hesperoyucca whipplei that grew 3.7 m in 14 days. What was its growth rate in micrometers per second?

$$
\begin{aligned}
G R & =\frac{3.7 \mathrm{~m}}{14 \mathrm{~d}}=0.264 \frac{\mathrm{~m}}{\mathrm{~d}} \\
& =0.264 \frac{\mathrm{~m}}{\mathrm{~d}} \times \frac{1 \mu \mathrm{~m}}{10^{-6} \mathrm{~m}} \times \frac{1 \mathrm{~d}}{86400 \mathrm{~s}} \\
& =3.06 \frac{\mu \mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Problems

-1 SSM Earth is approximately a sphere of radius $6.37 \times 10^{6} \mathrm{~m}$. What are (a) its circumference in kilometers, (b) its surface area in square kilometers, and (c) its volume in cubic kilometers?
-5 SSM WWW Horses are to race over a certain English meadow for a distance of 4.0 furlongs. What is the race distance in (a) rods and (b) chains? (1 furlong $=201.168 \mathrm{~m}, 1 \operatorname{rod}=5.0292 \mathrm{~m}$, and 1 chain $=20.117 \mathrm{~m}$.)

Problems

-15 A fortnight is a charming English measure of time equal to 2.0 weeks (the word is a contraction of "fourteen nights"). That is a nice amount of time in pleasant company but perhaps a painful string of microseconds in unpleasant company. How many microseconds are in a fortnight?
-21 Earth has a mass of $5.98 \times 10^{24} \mathrm{~kg}$. The average mass of the atoms that make up Earth is 40 u . How many atoms are there in Earth?
-23 SSM (a) Assuming that water has a density of exactly $1 \mathrm{~g} / \mathrm{cm}^{3}$, find the mass of one cubic meter of water in kilograms. (b) Suppose that it takes 10.0 h to drain a container of $5700 \mathrm{~m}^{3}$ of water. What is the "mass flow rate," in kilograms per second, of water from the container?

8. Significant Figures

- Every measurement has some uncertainty in it. For a example, a length measurement of 163.4 cm is said to have an absolute uncertainty of 0.1 cm . The uncertainty is sometimes expressed explicitly; $163.4 \pm 0.1 \mathrm{~cm}$.
- The number of significant figures (also significant digits) in a measurement or a result is the number of figures (digits) that are known with some degree of reliability. For example, 163.4 cm has four significant figures, and 0.041 cm has two significant figures.

8. Significant Figures

Rules for deciding the number of significant figures:

- All nonzero digits in a measurement are significant figures.
- The leading zeroes are not significant figures. For example, 0.0000325 has three significant figures.
- The trailing zeroes not preceded by a decimal point are not necessarily significant figures. For example, 10000 has one to five significant figures. There are five significant figures in 1.0000, however.

8. Significant Figures

- Arithmetics:
- Multiplication \& Division: The resultant number has as many significant figures as the number with the least number of significant figures.

$$
3.14(2.093)^{2}=13.7552=13.8
$$

$$
\frac{3.11}{0.025}=124.4=120
$$

- Addition \& Subtraction: The resultant number has as many digits after the decimal point as the number with the least number of digits after the decimal point.

$$
\begin{gathered}
1.0201+8.54=9.5601=9.56 \\
14.7-15.03=-0.33=-0.3
\end{gathered}
$$

9. Dimensional Analysis

- The physical dimension of the physical quantity x (written as $[x]$) is the product of the base quantities constituting it. In Phys101, $[x]$ has the general form

$$
[x]=L^{l} T^{m} M^{n}
$$

where $L=$ Length, $T=$ Time $\& M=$ Mass. $l, m \& n$ are rational numbers (mostly integers).

- Examples:

$$
\begin{gathered}
{[\text { period }]=T} \\
{[\text { speed }]=\frac{L}{T}} \\
{[\text { Area }]=L \times L=L^{2}} \\
{[\pi]=1 \text { (dimensionless!) }}
\end{gathered}
$$

9. Dimensional Analysis

- All terms in any correct physical equation must have the same dimension. For example,

$$
\begin{gathered}
\text { distance }=\frac{1}{2} \text { acceleration } \times \text { time }^{2} \\
{[\text { distance }]=L}
\end{gathered}
$$

$$
\begin{aligned}
{\left[\text { acceleration } \times \text { time }^{2}\right] } & =[\text { acceleration }] \times[\text { time }]^{2} \\
& =\frac{L}{T^{2}} \times T^{2}=L
\end{aligned}
$$

9. Dimensional Analysis

- Example: Using Newton $2^{\text {nd }}$ law

$$
\text { Force }=\text { mass } \times \text { acceleration },
$$ What is the dimension of force?

We have

$$
\begin{aligned}
{[\text { Force }] } & =[\text { mass }] \times[\text { acceleration }] \\
& =M \times \frac{L}{T^{2}}=\frac{M L}{T^{2}} .
\end{aligned}
$$

9. Dimensional Analysis

- Dimensional analysis can be helpful in solving problems and checking solutions.
Example: Using that the acceleration due to gravity is g, what is the period P of a pendulum of length l ?

We know that $[P]=T$. We need a combination of g and l that has the dimension of T.

We therefore write

$$
P=c g^{a} l^{b},
$$

where c is a constant. We need to find of a and b.

9. Dimensional Analysis

$$
P=c g^{a} l^{b}
$$

We have that

$$
\left[c g^{a} l^{b}\right]=[g]^{a}[l]^{b}=T
$$

Using $[g]=L / T^{2}$ and $[l]=L$ we get

$$
L^{a+b} T^{-2 a}=T
$$

which gives us

$$
\begin{gathered}
a+b=0 \\
-2 a=1
\end{gathered}
$$

9. Dimensional Analysis

$$
\begin{gathered}
a+b=0 \\
-2 a=1
\end{gathered}
$$

Solving for a and b we get

$$
a=-\frac{1}{2} \text { and } b=\frac{1}{2}
$$

The period of a pendulum is therefore

$$
P=c \sqrt{\frac{l}{g}} .
$$

9. Dimensional Analysis: Problems

The position y of a particle moving along the y axis depends on the time t according to the equation $y=A t-B t^{2}$. What are the dimensions of the quantities A and B, respectively?

$$
[y]=L
$$

The dimensions of $A t$ and $B t^{2}$ must be Length too:

$$
\begin{gathered}
{[A t]=[A] T=L \Longrightarrow[A]=\frac{L}{T}} \\
{\left[B t^{2}\right]=[B] T^{2}=L \Longrightarrow[B]=\frac{L}{T^{2}}}
\end{gathered}
$$

9. Dimensional Analysis: Problems

Suppose $A=B^{n} / C^{\mathrm{m}}$, where A has dimensions [LT], B has dimensions $\left[\mathrm{L}^{2} \mathrm{~T}^{-1}\right]$, and C has dimensions [LT^{2}]. What are the values of the exponents n and m ?

9. Dimensional Analysis: Problems

Which formula could be correct for the speed \boldsymbol{v} of ocean waves in terms of the density $\boldsymbol{\rho}$ of sea water, the acceleration of free fall \boldsymbol{g}, the depth \boldsymbol{h} in the ocean, and the wave length λ ?
(Note: Unit for wave length λ is meter (m) and unit for density ρ is $\mathrm{kg} / \mathrm{m}^{3}$)
A) $v=\sqrt{g \lambda}$
B) $v=\sqrt{\frac{g}{h}}$
C) $v=\sqrt{\rho g h}$
D) $v=\sqrt{g \rho}$
E) $v=\sqrt{\frac{\rho g}{h}}$

9. Dimensional Analysis: Problems

Work is defined as the scalar product of force and displacement. Power is defined as the rate of change of work with time. The dimension of power is
A. $M L^{2} T^{-3}$
B. $M L^{2} T^{-2}$
C. $\mathrm{M} \mathrm{L}^{3} \mathrm{~T}^{-2}$
D. $M L^{2} T^{-1}$
E. $\mathrm{ML} \mathrm{T} \mathrm{T}^{-2}$

