MONITORING THE DE-COKING OF COKED CATALYSTS USING DIELECTRIC PROPERTIES OF THE GLOW DISCHARGE

Abdulaziz Aljalal Physics Department, KFUPM

Mohammad Aslam Khan

Center for Applied Physical Sciences Research Institute, KFUPM

Crude Oil

Crude Oil

Traditional way of reactivating catalysts (de-coking)

A new way of reactivating catalysts

Layers of carbons $O_2 O_2 O_2$ $O_2 O_2$ $O_2 O_2$ $O_2 O_2$ $O_2 O_2$

At low temperatures, O₂ molecules do not react well with coke

CO and CO₂ can be easily pumped out of the system

At low temperatures, O atoms are very reactive with coke

Offline

Analysis of the surface of the catalyst Test catalytic activity

Spectroscopy

Specific to gas species Expensive Complicated Dielectric property of plasma Not specific to gas species Cheap Simple

Experimental setup

Constant-current mode

Prediction

Higher resistivty Higher dielectric constant Higher pressure

Results

Results

Visible Spectroscopy

O atoms are not consumed

Visible Spectroscopy

Consumption of Oxygen

Visible Spectroscopy

CO molecules generated

Conclusion

Dielectric property of plasma can be used to monitor the de-ckoing process of a coked catalyst

Qualitatively, dielectric property of plasma correlates well with the spectroscopic results form O atoms and CO molecules

More experiments are needed to establish the functional relationship between spectroscopic and dielectric property methods This work is a part of KFUPM-SABIC project number 2000/11. The support of KFUPM, Research Institute and the Physics Department is gratefully acknowledged.

Thank you for you listening