Let the absorption spectrum $\alpha(\omega)$ of a sample be centered at ω_{0} and have a Lorentzian profile with a maximum value of one and a full-width at half maximum of γ. Also, let the length of the sample to be 0.01 so that $\alpha L \ll 1$. Use the approximation $e^{-\alpha} \approx 1-\alpha L$.

Suppose a laser beam with frequency $\omega_{L 0}$ and power P_{0} is sent through the sample and the laser frequency is modulated sinusoidally such that the laser frequency becomes $\omega_{L}=\omega_{L 0}+a \sin \Omega t$, where a is the modulation depth and Ω is the angular frequency of modulation. Suppose you are using an ideal lock-in amplifier to detect the transmitted power. Your lock-in amplifier multiplies the transmitted power by $\sin (n \Omega t+\phi)$, and take the average over on period of the modulation frequency and divides the result by the average of P_{0} over one modulation period. Here n is a positive integer and ϕ is a phase constant that needs to be adjusted for each order n to get the maximum value and the right sign of the derivative. When modulating with $\sin \Omega t$ and assuming no phase is accumulated during measurement process, multiply by $\sin (1 \Omega t+0)$ to extract the first derivative, multiply by $\sin (2 \Omega t-\pi / 2)$ to extract the second derivative, and multiply by $\sin (2 \Omega t-\pi)$ to extract the third derivative.

Q1.
Use Mathematica to simulate your ideal lock-in amplifier action and plot the output of the amplifier as a function of a dimensionless quantity $x=\frac{\omega-\omega_{0}}{\gamma}$ from $x=-2$ to $x=+2$ for the following cases
$a=0.05 \gamma$ and $n=1$.
$a=0.05 \gamma$ and $n=2$.
$a=0.05 \gamma$ and $n=3$.
Q2.
Find expressions for the first, second and third derivatives of $\alpha(\omega)$ with respect to ω.
Use the last equation in page 10 of the $5^{\text {th }}$ edition of Demtröder book "laser spectroscopy 2 Experimental Techniques" to find an approximate expression for the output of your lock-in amplifier for $n=1,2$ and 3. Use only the first term of each square bracket.

Q3.
Plot the expressions you obtain in Q 2 as function of x from $x=-2$ to $x=+2$ for the same cases in Q 1 . Compare the approximate result of Q3 and the exact result of Q1 by overlapping the corresponding plots.

Q4.
Plot the exact and approximate result of your lock-in amplifier for the case $n=1$ and modulation depth of 0.2 .

Q5.
Plot the exact result of your lock-in amplifier for the case $n=1$ and for different modulation depths and find the modulation depth that results in the maximum signal of the lock-in amplifier.

