Phys102-152-ch23 Page **1** of **17**

1-143-Q6

You are given a large insulating object that has a uniform charge density of $2.5~\mu\text{C/m}^3$. Now imagine a sphere of radius 20 cm inside the material. What is the net flux through the surface of the sphere?

- A) $9.5 \times 10^3 \text{ Nm}^2/\text{C}$
- B) Zero
- (C) 2.7×10³ Nm²/C
- D) $8.1 \times 10^3 \text{ Nm}^2/\text{C}$
- E) It cannot be found since we do not know the size and shape of the object.

2-143-Q7

Figure 3 gives the magnitude of the electric field inside and outside sphere **A** with a positive charge distributed uniformly throughout its volume. A Gaussian spherical surface **B** is concentric with sphere **A** and has a radius of 20.0 cm. What is the net flux through surface **B**?

Fig# 3

- A) $2.51 \times 10^5 \text{ Nm}^2/\text{C}$
- B) $4.22 \times 10^6 \text{ Nm}^2/\text{C}$
- C) $8.21 \times 10^4 \text{ Nm}^2/\text{C}$
- D) $3.11 \times 10^4 \text{ Nm}^2/\text{C}$
- E) Zero

Phys102-152-ch23 Page **2** of **17**

3-143-Q8

In **Figure 4**, an electron is shot directly away from a uniformly charged sheet. It moves with an acceleration of 2.86×10^4 m/s². The sheet is non-conducting, flat and very large. What is the sheet's surface charge density? Ignore the gravitational force.

Fig# 4

- A) $2.88 \times 10^{-18} \text{ C/m}^2$
- B) $3.85 \times 10^{-18} \text{ C/m}^2$
- C) $9.85 \times 10^{-18} \text{ C/m}^2$
- D) $18.2 \times 10^{-18} \text{ C/m}^2$
- E) $1.21 \times 10^{-18} \text{ C/m}^2$

4-143-Q9

An infinitely long line of charge carries a uniform charge per unit length of 2.5×10^{-7} C/m. The line is surrounded by an infinitely long conducting cylindrical shell of radius 2.0 cm. The shell carries a net linear charge density of -2.0×10^{-7} C/m, with the line as the axis of the shell as shown in **Figure 5**. What is the magnitude of the electric field at a distance of 1.00 cm from the line?

Fig# 5

- A) $4.5 \times 10^5 \text{ N/C}$
- B) $8.1 \times 10^5 \text{ N/C}$
- C) $9.0 \times 10^4 \text{ N/C}$
- D) $3.6 \times 10^5 \text{ N/C}$
- E) 0

Phys102-152-ch23 Page **3** of **17**

5-142-Q5

Q5. A 2.6 μ C charge is at the center of a cube 7.0 cm on each side. What is the electric flux, in kN.m²/C, through one face of the cube?

- A) 49
- B) 24
- C) 12
- D) 89
- E) Zero

6-142-Q6

Q6. **Figure 3** shows a pyramid with horizontal square base, a = 6.00 m on each side, and a height, h = 4.00 m. The pyramid is placed in an upward vertical electric field of magnitude E = 52.0 N/C. If the pyramid does not include any charge inside, calculate the electric flux, in N.m²/C, through its four slanted (inclined) surfaces.

- A) $+1.87 \times 10^3$
- B) -1.87×10^3
- C) $+0.9 \times 10^{3}$
- D) -0.9×10^3
- E) -3.27×10^3

Phys102-152-ch23 Page **4** of **17**

7-142-Q7

Q7. **Figure 4** show an infinitely long line of charge having a uniform charge per unit length λ . The line lies at a normal distance d from the center of a sphere of radius R (d < R). Determine the total electric flux through the surface of the sphere resulting from this line charge.

A)
$$\frac{2\lambda\sqrt{R^2-d^2}}{\varepsilon_o}$$

B)
$$\frac{4\lambda\sqrt{R^2-d^2}}{\varepsilon_c}$$

C)
$$\frac{\lambda\sqrt{R^2-d^2}}{2\varepsilon_a}$$

D)
$$\frac{\lambda\sqrt{R^2-d^2}}{\varepsilon_a}$$

E)
$$\frac{2\lambda(R^2-d^2)}{\varepsilon_o}$$

Phys102-152-ch23 Page **5** of **17**

8-142-Q8

Q8. Figure 5 shows sections of three infinitely flat thin insulating charge sheets, each carrying surface charge density of magnitude σ . Find the magnitude of the electric field in region 3.

- A) $3\sigma/2\varepsilon_0$
- B) $\sigma/2\varepsilon_0$
- C) $3\sigma/\epsilon_0$
- D) σ/ϵ_0
- E) $\sigma/3\varepsilon_0$

9-142-Q9

Q9. An insulating spherical ball of radius 4.0 cm has – 40 μC charge uniformly distributed throughout the volume. Find the magnitude and direction of the electric field at a point 2.0 cm from its center.

A) 1.13×10⁸ N/C towards the center B) 1.13×10⁸ N/C away from the center C) 0.45×10⁸ N/C towards the center D) 0.45×10⁸ N/C away from the center E) 3.23×10⁸ N/C towards the center

Phys102-152-ch23 Page **6** of **17**

10-141-Q6

Q6. A particle of charge $\pm 10e$ and mass $6.0 \times 10^{-6}\,g$ is fired directly toward a very long straight conducting wire of linear charge density +6.0 µC/m as shown in Figure 3. Find the magnitude and direction of acceleration of the charged particle when it reaches point P, 5.0 cm from the wire. Ignore the effect of gravity.

- D) $2.6 \times 10^{-6} \,\mathrm{m/s^2}$ to the right
- E) Zero

11-141-Q7

Q7. Figure 4 shows a cross section of three large insulating sheets with their surface charge densities ($\sigma = 8.85 \text{ pC/m}^2$). The magnitude of the electric field at point A is:

- A) $5.00 \times 10^{-1} \text{ N/C}$
- B) $3.00 \times 10^{-1} \text{ N/C}$
- C) $1.50 \times 10^{-1} \text{ N/C}$
- D) $1.00 \times 10^{-1} \text{ N/C}$
- E) 1.30×10^{-1} N/C

Phys102-152-ch23 Page **7** of **17**

12-141-Q8

Q8. An unknown charge q sits at the center of a thin conducting spherical shell of radius 10 cm which carries a charge of $Q = -20 \mu C$ (see Figure 5). If the electric field at a point 15 cm from the center of the sphere is 1.2×10⁶ N/C radially outward, find the value of q.

- A) $+23 \mu C$
- B) $+30 \mu C$
- C) -23μ C
- D) $-30 \, \mu C$
- E) $+50 \,\mu$ C

13-133-Q6

A 5.14 μ C point charge is at the center of a cube with sides of length 0.25 m. What is the electric flux through one of the faces of the cube?

- A) $9.68 \times 10^4 \text{ N.m}^2/\text{C}$
- B) $1.81 \times 10^5 \text{ N.m}^2/\text{C}$ C) $3.68 \times 10^4 \text{ N.m}^2/\text{C}$ D) $4.68 \times 10^5 \text{ N.m}^2/\text{C}$ E) $5.35 \times 10^3 \text{ N.m}^2/\text{C}$

Phys102-152-ch23 Page **8** of **17**

14-133-Q7

Two thin nonconducting sheets of charges A and B, as shown in **Figure 4**, are parallel and vertical. The sheets have surface charge densities of σ_A = 3.8×10⁻⁹ C/m² and σ_B = -1.9 × 10⁻⁹ C/m² respectively. Find the ratio (E₂/E₁) of the magnitude of the electric field in region 2 to that in region 1.

- A) 3.0
- B) 2.0
- C) 4.0
- D) 1.0
- E) 5.0

15-133-Q8

Short sections of two very long parallel lines of charge, separated by L=8.0 cm, as shown in **Figure 5**, are fixed in place. The uniform linear charge densities of the wires are 5.0 μ C/m for line 1 and -1.0 μ C/m for line 2, respectively. Where along the x axis, is the net electric field due to the two lines zero?

Phys102-152-ch23 Page **9** of **17**

16-133-Q9

A non-conducting sphere of radius R = 7.0 cm carries a charge $Q = 4.0 \times 10^{-3}$ C distributed uniformly throughout its volume. At what distance, measured from the center of the sphere does the electric field reach a value equal to half its maximum value?

- A) 3.5 cm and 9.9 cm
- B) 2.5 cm and 7.9 cm
- C) 4.9 cm and 8.8 cm
- D) 3.5 cm and 8.1 cm
- E) 5.5 cm and 9.0 cm

17-132-Q6

Q6. A metallic sphere contains a cavity at the center as shown in **Figure 4**. The outer surface of the sphere is grounded by connecting a conducting wire between it and the earth. A negative point charge $Q = -5.4 \times 10^{-9}$ C is placed inside the cavity of the sphere. What is the net electric flux through the outer surface of the metallic sphere? Fig#

- A) 0
- B) $+6.1\times10^2 \text{ N.m}^2/\text{C}$
- C) $-6.1 \times 10^2 \text{ N.m}^2/\text{C}$
- D) $+3.1\times10^2 \text{ N.m}^2/\text{C}$
- E) $-3.1 \times 10^2 \text{ N.m}^2/\text{C}$

Phys102-152-ch23 Page **10** of **17**

18-132-Q7

Q7. Consider two infinitely long thin wires carrying uniform linear charge densities λ_1 and λ_2 . The wires are arranged as shown in **Figure 5** and $\lambda_2 = +5.50$ nC/m. If the net electric field at P is zero, determine the magnitude of λ_1 .

Fig#

- A) 2.75 nC/m
- B) 1.50 nC/m
- C) 1.75 nC/m
- D) 2.00 nC/m
- E) 0.50 nC/m

19-132-Q8

Q8. **Figure 6** shows two large, parallel, non-conducting sheets, each with fixed uniform charge density: $\sigma_1 = +2.0 \times 10^{-6} \text{ C/m}^2$, $\sigma_2 = -4.0 \times 10^{-6} \text{ C/m}^2$. The ratio of the magnitude of the electric field at point A to that at point B, (E_A/E_B) , is:

Fig#

- A) 3.0
- B) 0.5
- C) 1.0
- D) 3.5
- E) 1.5

Phys102-152-ch23 Page **11** of **17**

20-132-Q9

Q9. **Figure 7** shows the cross sectional area of two identical charged solid spheres, 1 and 2, of radius R. The charge is uniformly distributed throughout the volumes of both the spheres. The net electric field is zero at point P, which is located on a line connecting the centers of the spheres, at radial distance R/2 from the center of sphere 1. If the charge on sphere 1 is $q_1 = 7.8~\mu\text{C}$, determine the magnitude of the charge q_2 on sphere 2.

Fig# R R R P 2

- A) 8.8 μC
- B) 3.2 μC
- C) 9.3 µC
- D) 3.5 μC
- E) 6.8 μC

21-131-Q6

The electric field in a certain region of the Earth's atmosphere is directed vertically downward. At an altitude of 150 m, the field has a magnitude of 30 N/C. At an altitude of 100 m, the magnitude of the electric field is 50 N/C. Find the net amount of electric charge contained in a cube 50 m on edge, with horizontal faces at altitudes of 100 and 150 m.

- Α) 0.44 μC
- B) 1.8 μC
- C) $2.1 \mu C$
- D) 1.3 μC
- E) 4.4 μC

Phys102-152-ch23 Page **12** of **17**

22-131-Q7

In **FIGURE 2**, short sections of two very long parallel lines of charge are shown, fixed in place, and separated by L = 10 cm. Their uniform linear charge densities are + 8.0 mC/m for line 1, and - 4.0 mC/m for line 2. What is the x coordinate of the point at which the net electric field due to the two lines is zero.

Fig#

- A) 15 cm
- B) 5.0 cm
- C) 20 cm
- D) 25 cm
- E) 10 cm

23-131-Q8

Two large, parallel, non-conducting uniformly charged sheets carry surface charge densities of $+ 12.0 \text{ nC/m}^2$ and $+ 5.00 \text{ nC/m}^2$. Determine the magnitude of the electric field at a point midway between the sheets.

- A) 395 N/C
- B) 960 N/C
- C) 790 N/C
- D) 1920 N/C
- E) 565 N/C

Phys102-152-ch23 Page **13** of **17**

24-123-Q6

Figure 3 shows three Gaussian surfaces A, B and C, with corresponding electric flux $\Phi_A = -q/\epsilon_0$, $\Phi_B = +3q/\epsilon_0$ and $\Phi_C = -2q/\epsilon_0$ through them, respectively. What is the value of the charge q_1 ?

Fig#

- A) +2q
- B) +q
- C) -3q
- D) +3q
- E) -2q

25-123-Q7

A charged conducting spherical shell has an inner radius of 6.0 cm and an outer radius of 10 cm. A point charge is placed at the center of the shell such that the resulting surface charge densities on the inner and outer surfaces of the shell are -100 nC/m² and +100 nC/m², respectively. What is the electric field at a distance of 12 cm from the center of the shell?

- A) $7.9 \times 10^3 \text{ N/C}$, outward
- B) 7.9×10^3 N/C, inward
- C) 9.7×10^3 N/C, outward
- D) 9.7×10^3 N/C, inward
- E) 5.3×10^3 N/C, outward

Phys102-152-ch23 Page **14** of **17**

26-123-Q8

An electron experiences a force of magnitude F when it is 2 cm away from a very long, charged wire that has a uniform linear charge density $+\lambda$. If the linear charge density is increased to $+2\lambda$, at what distance from the wire will the electron experience a force of the same magnitude F?

- A) 4 cm
- B) 1 cm
- C) 3 cm
- D) 2 cm
- E) 6 cm

27-123-Q9

Figure 4 shows cross sections through two large parallel non-conducting sheets with surface charge densities $\sigma_1 = -1.8 \ \mu\text{C/m}^2$ and $\sigma_2 = +1.2 \ \mu\text{C/m}^2$. What is the electric field at point P (in units of $10^4 \ \text{N/C}$)?

Fig#

- A) $-3.4 \hat{i}$
- B) $-6.8 \hat{i}$
- C) + 3.4 i
- D) + 6.8 \hat{i}
- E) $+1.7 \hat{i}$

Phys102-152-ch23 Page **15** of **17**

28-123-Q10

A uniformly charged solid insulating sphere has a radius of 5.0 cm. If the magnitude of the electric field due to this sphere at r = 8.0 cm is 2.0×10^5 N/C, what is the magnitude of the field at r = 3.0 cm? [r is the distance from the center of the sphere]

- A) $3.1 \times 10^5 \text{ N/C}$
- B) $1.8 \times 10^5 \text{ N/C}$
- C) $9.0 \times 10^4 \text{ N/C}$
- D) $2.7 \times 10^5 \text{ N/C}$
- E) $7.2 \times 10^5 \text{ N/C}$

29-122-Q5

Figure 3 a, b and c, show the cross sections of three cylinders each carrying a uniform charge Q. Concentric with each cylinder is a cylindrical Gaussian surface, all three with the same radius. Rank the Gaussian surfaces according to the electric field at any point on the surface, GREATEST FIRST.

Fig#

- A) All tie
- B) a, b, c
- C) b, c, a
- D) c, b, a
- E) a, c, b

Phys102-152-ch23 Page **16** of **17**

30-122-Q6

A uniformly charged conducting sphere of 3.0 cm diameter has a surface charge density of 10 μ C/m². Find the total electric flux leaving the surface of the sphere.

- A) $3.2 \times 10^{3} \text{ N.m}^{2}/\text{C}$
- B) $1.3 \times 10^{4} \text{ N.m}^2/\text{C}$
- C) $2.5 \times 10^{3} \text{ N.m}^{2}/\text{C}$
- D) $1.4 \times 10^{5} \text{ N.m}^{2}/\text{C}$
- E) $6.7 \times 10^{2} \text{ N.m}^{2}/\text{C}$

31-122-Q7

A 6.0 μ C charge is placed on a thin spherical conducting shell of radius R = 5.0 cm. A particle with a charge of $-10 \,\mu\text{C}$ is placed at the center of the shell. The magnitude and direction of the electric field at a point 2R from the center of the shell are:

- A) 3.6×10^6 N/C, toward the center
- B) 3.6×10^6 N/C, away from the center
- D) 5.4×10^6 N/C, toward the center
- E) 5.4×10^6 N/C, away from the center

32-122-Q8

A long, straight wire has fixed negative charge with a linear charge density of magnitude 4.5 nC/m. The wire is enclosed by a coaxial, thin walled nonconducting cylindrical shell of radius 20 cm. The shell is to have a positive charge on its outside surface (with a surface charge density σ) that makes the net **electric** field at points 30 cm from the center of the shell equal to zero. Calculate σ .

- A) 3.6×10^{-9} C/m²
- B) $3.0 \times 10^{-10} \text{ C/m}^2$
- C) 1.5×10^{-10} C/m²
- D) 4.5×10^{-7} C/m² E) 7.8×10^{-5} C/m²

Phys102-152-ch23 Page **17** of **17**

33-122-Q9

Two large metal plates of area 2.0 m^2 face each other, 6.0 cm apart, with equal charge magnitudes $|\mathbf{q}|$ but opposite signs. The magnitude of the electric field between the plates is $1.2 \times 10^2 \text{ N/C}$. Find $|\mathbf{q}|$.

- A) 2.1 nC
- B) 1.1 nC
- C) 0.50 nC
- D) 13 nC
- E) 0.40 nC