Selected Problems
from Chapter 11
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1) A disk has a mass of 32 kg and a radius of 25 cm.
It rolls without slipping along a level ground at
5.0 m/s. Find the total kinetic energy of the disk.
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A 2.5 kg block travels around a 0.50 m radius circle with
an angular wvelocity of 12 rad/s. Find the magnitude of
the angular momentum of the block about the center of the
circle.

7.5 kg.m**2/s e

1.5 kg.m**2 /s

b.0 kg.m**2 /s

9.0  kg.m**2/s 0] e

12 kg.m**2 /s
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l=lw
| =mr? = 2.5><(O.50)2 =0.625kg.m*
¢ =0.625x12=7.5kg.m?*/s
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student 1in a class demonstration is
rotating chair with his arms by the side

chair-student system 1s rotating with an The

student suddenly extends his arms horizontally. The angular
velocity of the system:
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remains the same
may ilncrease or decrease depending on the mass of the student
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mass 1s attached to a string and fixed to

M

2.0 kg

m

a vertical rod Fig . The mass is initially orbiting with
a speed of 5.0 m/s in a circle of radius 0.75 m. The string
is then slowly winding around the wvertical rod. What is the
speed of the mass at the moment the string reaches a length
cf 0.25 m? Vertical rod
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AZ 3.9 m/s 3

A3 45 m/s 3

A4 75 m/s ‘

A5 12 m/s
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3 A 140 kg hoop rolls along a horizontal floor so that the

boop's center of mass has a speed of 0.150 m/s, How much
work must be done on the hoop to stop it? ssm



3. By Eq. 10-52, the work required to stop the hoop is the negative of the initial Kinetic
energy of the hoop. The initial kinetic energy is K = %Imj +3‘m1:E (Eq. 11-5), where [ =
mR* is its rotational inertia about the center of mass, m = 140 ke, and v = 0.150 m/s is the

speed of its center of mass. Eq. 11-2 relates the angular speed to the speed of the center of
mass: @=Vv/R. Thus,

ERTE 2
K=Lmr| 2 - |+ L = mv? = (140)(0.150)
2R 2 AT

which implies that the work required is — 3.13 I.



ee10 Figure 11-34 gives the
speed v versus time ¢ [or a
(1500 kg object of radius 6.00
¢m that rolls smoothly down a
M ramp. What 1s the rota-
tnonal inertia of the object?
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Fig. 11-34 Problem 10,



10. Wepluga= -3.5 m/s” (where the magnitude of this number was estimated from the

“rise over run’ in the graph), & = 30°, M = 0.50 kg and R = 0.060 m into Eq. 11-10 and
solve for the rotational inertia. We find /=7.2 x 107 kg'mz_



“ In Fig 11-30, a constanl
honzontal force Fo,, of mag-
mitude 10 N is applied 10 a
wheel of mass 10 kg and ra-
divs 030 m. The wheel rolls
moothly on the horzontal sur-
fuce. and the neceleration of its
snter of mass has magnitude Fig. 11-30 Problem 6,
Al mss®. (a) In unit-vector notation, what is the frictional
force on the wheel? (b) What is the rotational inertia of the
wheel about the rotation axis through its center of mass?

Fapp




&. With F,FF = (10 Nji . we solve the problem by applying Eq. 9-14 and Eq. 11-37.
(a) Mewton's second law in the x direction leads 1o

Fop—fi=ma = f,=10N—(10kg){0.60 mfs’ |=4.0 N,

In unit vector notation, we have f, =(—4.0 N)i which points lefrward,
(by With & =0.30 m, we find the magnitude of the angular acceleration to be

el = |l / B = 2.0 Tad/s",

from Eq. 11-6. The only force not directed tow ards {or away from) the center of mass 1s
_fs, and the torque 1t produces 1s clockwise:

r|=1lx| = (030m)(40N)=17(20mdfs*)

which vields the wheel’ s rotational inertia about its center of mass: 7 =060kg m”.



*19 In unit-vector notation, what is the net torque about the
origin on a flea located at coordinates (0, —4.0 m, 5.0 m) whes
forces F, = (30 N)k and F, = (=2.0 N)j act on the fica?



19. If we write 7 = xi + 1] +zk, then (using Eq. 3-30) we find 7 % F is equal to
(VF,—zF, )i +(zF, — xF.)j+ (xF, - VF, )E:

With (using STunits) x =0, v=-4.0,7=5.0, F, =0, F,=-2.0 and F, = 3.0 (these latter
terms being the individual forces that contribute to the net force), the expression above
yields

7 =Fx F=(=2.0N m)i.



2t A 20 kg particle-like object moves in a plane with ve-
katy components v, = 30 m/s and v, = 60 m/s as il passes
twough the point with (x, ¥) coordinates of (3.0, —4,0) m. Just
ihen, in unit-vector notation, what s its angular momentum
mlative 10 (a) the origin and (b) the point (2.0, =2.0) m?



26, Ifwe write 7" =x"1+v" J+ 7"k, then (using Eq. 3-30) we find "=V Is equal to
(yv, =2, Ji+(2v, = xv, ) j+xv, - vv, |k

(a) Here, ¥'=7 where 7 =3.0i-4.0]. Thus, dropping the primes in the above ex pression,
we set (with SI units understood) x=3.0,yv=—4.0,7=0,v, =30,v, =60and v. = 0. Then

(with m = 2.0 kg) we obtain
f::'=m{f‘}=:1|-'-}={E+.{}}=:]IE}E kg-m:,/s}fz.

(by Now 7'=r—7 where 7, =—2.Df—2.£ﬁ. Therefore, in the above expression, we set
¥'=5.0,y'=-2.0,7"=0,v, =30, v, =60 and v, = 0. We get

f=m(F=V)=(72x10" kg-m*/s)k.



*35 The angular momentum of a Alywheel having a rola-
tional inertia of 0.140 kg - m* about its central axis decreases
from 3.00 to 0.800 kg - m%/s in 1.50 s. (a) What is the magnitude
of the average torgue acting on the flywheel about ns central
axis during this penod? (b) Assuming a constant angular ac-
celeration, through what angle does the flywheel tum? (c)
How much work is done on the wheel? (d) What is the average

power Of the flywheel?! ssm



35 ia) Since T = dlfal, the ovemges torque acting dunng any interval Ar s given by
Ty = Ly —I|:J|'I_’I.r where L is the initial angular momentum and Ly is the final angular
momenturm. Ths

800 kg -m 53, -m”
D80 kg m S0k,
3 | 50

of I'Fn' E147 N-m . In this case the negative sign indicates that the direction of the
torque 15 opposite the directon of the mitial angalar momennam, implicithy taken o be

Pt e,
ib) The angle tumed is & =|:t:',:,.l+%|::r.l  1If the angular acceleration o is uniform, then so
iz the tarque and &= T Furthemmore, &, = LY, and we obiain

Li+les |:3.IIIIII|:3_-m:lll'::]|:].5lils]+i|:—].¢'.‘-?r-l-rn][l.ﬂils]:
- 2

d= =204 rad.

I 0.1 40 kg - m
ici The work done on the whesl is
W= =|:—I..4T H-ru:||:2III.-1-m-:|:|=—E':.I.'3 1

whers more precise values are ussd in the calculation than what is shoen bere. An
equally good method for inding W is Bg. 10-52, whach, if desired, can be reevntien as

WL -5

id} The average power &5 the work done by the flywhes] ithe pegative of the work done
on the flveches]) divided by the time interval:

' =2
P = L .2 =19.9%W .
Ar 1.50s




“g3 Figure 11-5] is an over- '
ead 0% OF & Hi WSO =‘\'ﬁ
ﬂd af |'E!.l"|gth [I.I:]I'.IP Im ﬂrll'.l Miass Rotalion .".
M rotatmg honzontally at an- axis =

pﬁlr speed 2000 rad/s about an Fig. 11-51 Problem 53.
i through 1ts center. A par-

ficke of mass M/3.00 initially attached to one end is ejected
fom the rod and travels along a path that is perpendicular o
the rod at the instant of ejection. If the partcle’s speed v, is
800 m/s greater than the speed of the rod end just after ejec-
bon, what is the value of v,?



53. By angular momentum conservation (Eq. 11-33), the total angular momentum after
the explosion must be equal to before the explosion:

L+L =L +L,

Ly o, 1 2 1 2
()nnp + 12ML (= fpm+ ]EML (1)

9

where one must be careful to avoid confusing the length of the rod (L = 0.800 m) with the
angular momentum symbol. Note that I, = m(L2)* by Eq.10-33, and

l'.:'_-}r = L’Endllllr - (FF‘ — 6};(11;2},

where the latter relation follows from the penultimate sentence in the problem (and “6”
stands for “6.00 m/s” here). Since M = 3m and @ = 20 rad/s, we end up with enough
information to solve for the particle speed: v, = 11.0 mv/s.
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