KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Particle Physics (Phys. 441)

Assignment # 3 Due to Saturday November 27, 2004

- 1. Problem 4.38 in Griffiths (page 141). (20 pts)
- 2. Explain why the short lived Kaon, K_s^0 , decays to π^+ , $\pi^ (K_s^0 \longrightarrow \pi^+ \pi^-)$ with roughly twice the probability the decay to two $\pi^0 \mod (K_s^0 \longrightarrow \pi^0 \pi^0)$. (20 pts)

3. Numerical Analysis:

We have shown in class that if one start with pure K^0 beam of unit intensity, then the intensities of K^0 and \bar{K}^0 after time are

$$I(K^{0}) = \frac{1}{4} \left[e^{-\frac{t}{\tau_{S}}} + e^{-\frac{t}{\tau_{L}}} + 2e^{-\left(\frac{t}{2\tau_{S}} + \frac{t}{2\tau_{L}}\right)} \cos[\Delta m t] \right]$$

$$I(\bar{K}^{0}) = \frac{1}{4} \left[e^{-\frac{t}{\tau_{S}}} + e^{-\frac{t}{\tau_{L}}} - 2e^{-\left(\frac{t}{2\tau_{S}} + \frac{t}{2\tau_{L}}\right)} \cos[\Delta m t] \right],$$

where $\tau_S = 0.893 \times 10^{-10}$ s, $\tau_L = 0.517 \times 10^{-7}$ s and $\Delta m.\tau_S = 0.474$.

- (a) Express the above intensities in terms of the dimensionless parameter $\frac{t}{\tau_S}$. Then plot the intensities as a function of $\frac{t}{\tau_S}$. (10 pts.)
- (b) Study the above intensities in the following two cases:(i) $\Delta m \ll \Delta \Gamma$, (ii) $\Delta m \gg \Delta \Gamma$, where $\Delta \Gamma = \Gamma_S \Gamma_L$. (20 pts.)
- (c) Experimentally, $B^0 \bar{B}^0$ mixing has been observed while no $D^0 \bar{D}^0$ mixing has been observed. What can you tell about the quantities Δm and $\Delta \Gamma$ in these two cases. (10 pts.)