Physics 101-Rec Quiz #6

Instructor: Dr. Mekki

Key Name: Id#: Sect.#:

A 2.0 kg block, starting from rest, slides a distance d = 1.0 m down a frictionless 30° incline where it contacts a spring. The mass slides an additional 25 cm as it is brought momentarily from rest by compressing the spring. Find the spring constant of the spring.

incline where it contacts a spring. The mass slides an additional 25 cm as it is brought momentarily from rest by compressing the spring. Find the spring constant of the spring.

$$W_{net} = \Delta K = W_{g} + W_{s}$$

$$W_{g} = (m_{g} \sin \theta) d$$

$$= 2 \times 9.8 \times \sin 30 \times 1.25$$

$$= 12.25 \text{ J}$$

$$W_{s} = \frac{1}{2} k x_{i}^{2} - \frac{1}{2} k x_{f}^{2} \qquad (x_{i} = 0)$$

$$x_{f} = -0.25 \text{ m}$$

$$\Delta K = K_{f} - K_{i} = 0$$

$$\sin ce \qquad K_{f} = 0 \quad and \quad K_{i} = 0$$

$$\Rightarrow W_{g} + W_{s} = 0 \Rightarrow 12.25 - 0.03 k = 0$$

$$\Rightarrow k = 392 \text{ Ym}$$