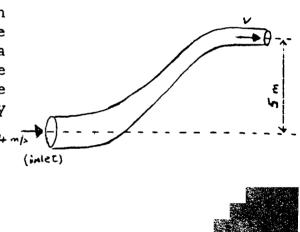
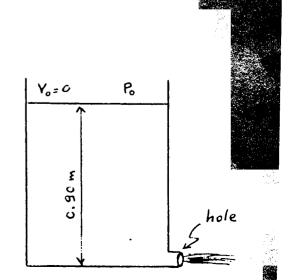

Water is flowing at 5.00 m/s in a pipe where the cross section is 4.00 cm**2 and the pressure is 1.5 * 10**5 N/m**2. If the area gradually becomes 8.00 cm**2 at a point 10.0 m below the first point, find the pressure at the second point.

- (A) 2.57 * 10**5 N/m**2
- B. 2.31 * 10**5 N/m**2
- C. 1.42 * 10**3 N/m**2
- D. 0.79 * 10**4 N/m**2
- E. 3.10 * 10**8 N/m**2




Water enters the first floor of a house through a pipe $2.0\,$ cm in diameter and at an absolute pressure of $4*(10**5)\,$ Pa. The pipe leads to a second floor room 5 m above (see figure) where the diameter is $1.0\,$ cm. The flow velocity in the inlet pipe is $4\,$ m/s. What is the flow velocity and pressure in the second room?

- A. 32 m/s; 9.90*(10**5) Pa
- B. 10 m/s; 16.60*(10**5) Pa
- C. 4 m/s; 4.00*(10**5) Pa
- (D.) 16 m/s; 2.31*(10**5) Pa
- E. 20 m/s; 1.80*(10**5) Pa

Water flows at the rate of 8.00 liter/min from a small hole at the bottom of a tank which is 0.900 m deep (see figure). Find the area of the hole.

- A. 1.32 * 10**(-1) m**2
- (B) 3.17 * 10**(-5) ·m**2
- C. 1.21 * 10**(-4) m**2
- D. 5.14 * 10**(-5) m**2
- E. 8.71 * 10**(-2) m**2

