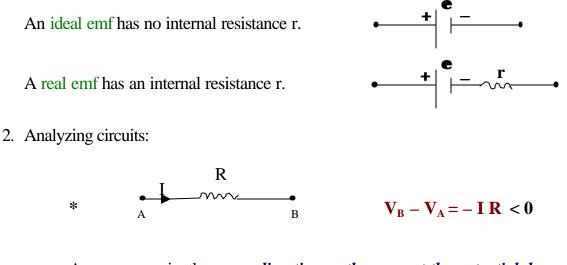
Uwo o ct{'qhej cr vgt '49

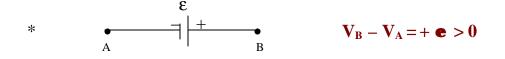
Prepared by Dr. A. Mekki

1. A battery is also called an electromotive force (emf).

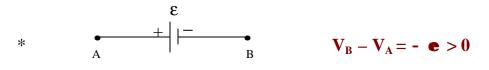


As you move in the same direction as the current the potential drops ($\Delta V = V_B - V_A$ is negative). * $A = V_B - V_A$ is negative). * $A = V_B - V_A = + I R > 0$

As you move in the *opposite direction of the current the potential increases* ($\Delta V = V_B - V_A$ is **positive**).



As you move across the power supply from -to + the *potential increases* ($\Delta V = V_B - V_A$ is **positive**).



As you move across the power supply from + to - the potential drops (ΔV is negative).

- 3. Suppose we have a battery of emf e and internal resistance r connected in an electrical circuit.
 - \blacktriangleright The rate of energy transferred from the emf to the charge carriers is **P** = **I V**.
 - > The rate at which energy is dissipated in the internal resistance **r** of the battery is $\mathbf{P} = \mathbf{I}^2 \mathbf{r}$.
 - > The rate at which chemical energy inside the battery changes is P = I e.

> Note: $\mathbf{I} \mathbf{V} = \mathbf{I} \mathbf{e} - \mathbf{I}^2 \mathbf{r}$ or $\mathbf{I} \mathbf{e} = \mathbf{I} \mathbf{V} + \mathbf{I}^2 \mathbf{r}$.

> If the emf is ideal then I = I V.

4. Resistors

For a *series combination* of resistors, the equivalent resistor is:

$$\mathbf{R}_{eq} = \mathbf{R}_{1} + \mathbf{R}_{2} + \mathbf{R}_{3} + \cdots$$

Note that the current through resistors is series is the same.

For a *parallel combination* of resistors, the equivalent resistor is:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots \cdots$$

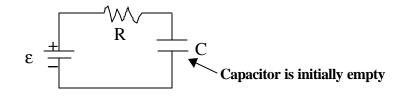
Note that potential difference across each resistor is the same.

Kirchhoff's Law # 1: The sum of the currents at a junction must be equal to zero. This is the law of conservation of charge. Kirchhoff's Law # 2:

The sum of the changes in potential around a loop must be equal to zero. This is the law of conservation of energy.

5. Capacitors

When a battery is connected across an <u>uncharged</u> capacitor in a simple RC circuit, then the capacitor will charge up.



The *current* in the circuit varies in time according to;

$$I(t) = \frac{\boldsymbol{e}}{R} e^{-\frac{t}{RC}} = \frac{\boldsymbol{e}}{R} e^{-\frac{t}{\boldsymbol{t}}}$$

The *charge* on the capacitor plate varies in time according to

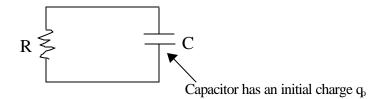
$$q(t) = C \boldsymbol{e} \left(1 - e^{-\frac{t}{RC}} \right)$$

And the *potential difference* across the capacitor can be calculated from

$$V = \frac{q}{C} = \boldsymbol{e}(1 - e^{-\frac{t}{RC}})$$

Where ε is the potential difference (emf) across the battery in Volts, R is the resistance in the circuit in Ohms, and C is the capacitance in Farad. The product *RC* = *t* is called the *time constant* and has units of time.

When a <u>charged</u> capacitor is connected across a resistance R then the capacitor will discharge into the resistance.



The *current* in the circuit varies according to the expression:

$$I(t) = \frac{q_o}{RC} e^{-\frac{t}{RC}}$$

where q_0 is the initial charge on the capacitor.

The *charge* on the plate of the capacitor varies in time according to the expression:

$$q(t) = q_o e^{-\frac{t}{RC}}$$

The potential difference across the capacitor varies in time according to the expression:

$$V = \frac{q}{C} = \frac{q_o}{C} e^{-\frac{t}{RC}}$$