6XP P DUTRITOSNIII

1. The electric current \boldsymbol{I} is defined as:

$$
I=\frac{d q}{d t}
$$

The current is the rate of flow of electric charge. It has units of Coulomb/second or Ampere (A).

It is also given by:

$$
I=n e v_{d} A
$$

where \boldsymbol{n} is number of charge carriers, e is the magnitude of the charge of the electron, $\boldsymbol{v}_{\boldsymbol{d}}$ is drift speed, that is, the speed of the electrons in the conductor, and \boldsymbol{A} is cross-sectional area of the conductor.

A uniform current density \boldsymbol{J} is defined as:

$$
J=\frac{I}{A}=n e v_{d}=\frac{l}{\rho} E=\sigma E
$$

Where $\boldsymbol{\rho}$ is the resistivity and $\boldsymbol{\sigma}$ is conductivity and \boldsymbol{E} is electric field. The current density has units of $\mathbf{A} / \mathbf{m}^{2}$.
2. The resistance \boldsymbol{R} of a conductor is defined as

$$
R=\frac{V}{I}
$$

where \boldsymbol{V} is the potential difference across the conductor and \boldsymbol{I} is the current through the condutor.

This relation is called Ohm's law. The unit of the resistance \boldsymbol{R} is volt per ampere or $\operatorname{Ohms}(\mathbf{\Omega})$.

The resistance depends on the geometry of the conductor, that is the length L and the cross section area A.

$$
R=\rho \frac{L}{A}=\frac{L}{\sigma A}
$$

where ρ is resistivity and σ is conductivity.
3. The resistivity of a conductor varies with temperature as:

$$
\rho=\rho_{o}\left[1+\alpha\left(T-T_{o}\right)\right]
$$

where ρ is resistivity at temperature T, ρ_{o} is resistivity at temperature T_{o} and α is temperature coefficient of resistivity (constant).

We can see from the above equation that

$$
\alpha=\frac{\rho-\rho_{o}}{\rho_{o} \Delta T}
$$

It is easy to see that the unit of α is $\rho^{\rho} \mathrm{C}$ or $/ \mathrm{K}$.

Similarly, the resistance varies with temperature T as

$$
R=R_{o}\left[1+\alpha\left(T-T_{o}\right)\right]
$$

where R_{o} is the resistance of the conductor at T_{o} and R is the resistance at temperature T .

Note: We neglect the changes in the length and cross section area with temperature.
4. The dissipated power \mathbf{P} in a resistor is given by;

$$
P=V I=R I^{2}=\frac{V^{2}}{R} \quad(\text { watt })
$$

This dissipated or lost power is transformed into heat.

Note: A light bulb with a power of 60 W has a resistance smaller than a light bulb with a power of 40 W !

