Summary of chapter 25

I. Objective:

1. Calculate the electric potential \mathbf{V} due to a charge distribution.
2. Calculate the electric potential difference between two points in an electric field (uniform).
3. Calculate the electric potential energy associated with a group of point charges. Calculate the work done by an external force in moving a charge of between any two points in an electric field.
4. Electric potential for a conductor.

II. Summary of major point:

1. The electric potential at the point P due to a continuous charge distribution is given by:

$$
V_{p}=k \int \frac{d q}{r}
$$

where r is distance between the point P and the element of charge dq inside the object.
>For a disk see example 25.5 in the textbook.
$>$ For a ring see example 25.4 in the textbook.
$>$ For a line charge example 25.6 in the textbook.
> For a charged sphere example 25.7 in the textbook
$>$ For a point charge:

$$
\mathrm{V}=\frac{\mathrm{kQ}}{\mathrm{r}}
$$

- The units for the potential is "Volt"
- The electric potential is SCALAR.

2. The potential difference between two points in an electric field is defined as:

$$
\Delta V=-\int_{A}^{B} \vec{E} \cdot d \vec{s}
$$

If the electric field is uniform, the potential difference will be given by;

$$
V_{B}-V_{A}=-E d \cos \theta
$$

where d is the distance between points A and B and θ is the angle between E and d .

\checkmark If $\theta=0$, then $V_{B}-V_{A}=-E d$
\checkmark If $\theta=180^{\circ}$, then $V_{A}-V_{B}=E d$
\checkmark If $\theta=90^{\circ}$, then $V_{A}-V_{C}=0$
(going from A to B)
(going from B to A)
(going from A to C)
$>$ The potential at point A is greater than that at point B.
$>$ The potential at point A is the same as that at point C.
> The dashed lines are called equipotentials lines.
3. The change in electric potential energy, $\Delta \mathrm{U}$, of a charge in moving from point A to point B in an electric field is given by;

$$
\Delta U=q\left(V_{B}-V_{A}\right)=-q E d \cos \theta
$$

* We can see from this formula that if q is positive, ΔU will be negative $\Rightarrow a$ positive charge will bse potential energy when it moves in the direction of the electric field $(\boldsymbol{\theta}=0)$ and will gain kinetic energy.
* On the other hand, if the charge is negative, ΔU will be positive $\Rightarrow a$ negative charge will gain potential energy when it moves in the direction of the electric field $(\boldsymbol{\theta}=0)$ and will lose kinetic energy.

The potental energy of a pair (2) of charges separated by a distance r is given by;

$$
U=k \frac{q_{1} q_{2}}{r}
$$

Important: THIS ENERGY REPRESENTS THE WORK REQUIRED to assemble the charges from infinity to their position at r .

To assemble three charges; $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}$, the potential energy (or work required) will be;

$$
U=k\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)
$$

4.

$>$ The surface of a charged conductor is an equipotential surface.
$>$ Since the electric field inside a conductor is zero, the potential is therefore constant inside a charged conductor and equal to that at the surface.
$>$ For a conducting sphere of radius R and charge Q , the electric potential is

- $\mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{R}} \quad$ (inside and on the surface)
- $\mathrm{E}=\frac{\mathrm{kQ}}{\mathrm{r}} \quad$ (outside)

