1. An electric force F acts on a point charge q in an external electric field E as shown below.

This force is conservative $\Rightarrow \quad W=-\Delta U$
2. We define the electric potential V at a point in the electric field as the potential energy per unit charge, that is

$$
V=\frac{U}{q}
$$

So the electric potential difference between points i and f is

$$
\Delta V=V_{f}-V_{i}=\frac{\Delta U}{q}
$$

The unit of the potentials energy is Joule and the unit of the electric potential is Joule/Coulomb $=\underline{\text { Volt. }}$.

The potential is a scalar.
Another unit of potential energy is used, that is electron-volt (eV);

$$
1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}
$$

The work done by an external agent in moving the charge from \boldsymbol{i} to \boldsymbol{f} is equal to the negative of the work done by the electric force; therefore;

$$
W=-q \Delta V \quad \text { (work done by the electric force) }
$$

$$
\text { Wapp }=q \Delta V \quad \text { (work done by the applied force) }
$$

3. The electric potential difference can be calculated from

$$
\Delta V=V_{f}-V_{i}=-\int \vec{E} \cdot d \vec{s}
$$

If E is uniform, then

$$
\Delta V=-\overrightarrow{\boldsymbol{E}} \cdot \overrightarrow{\boldsymbol{d}}=-\boldsymbol{E} \boldsymbol{d} \cos \boldsymbol{\theta}
$$

where θ is the angle between E and d (displacement).

Special cases:

$>$ If $\theta=0, \Delta \mathrm{~V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}=-\mathrm{E} \mathrm{d}<0 \quad$ The potential decreases.
$>$ If $\theta=180^{\circ}, \Delta \mathrm{V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}=\mathrm{Ed}>0$ The potential increases.
$>$ If $\theta=90^{\circ}, \Delta \mathrm{V}=\mathrm{V}_{\mathrm{f}}-\mathrm{V}_{\mathrm{i}}=0 \quad$ The potential remains constant.

Equipotentials surfaces

$$
\Rightarrow \quad V_{A}>V_{B}=V_{C}
$$

4. The change in electric potential energy, $\Delta \mathrm{U}$, of a charge moving from point \boldsymbol{i} to point f in a uniform electric field is given by;

$$
\Delta \boldsymbol{U}=\boldsymbol{q}\left(\boldsymbol{V}_{\boldsymbol{f}}-\boldsymbol{V}_{\boldsymbol{i}}\right)=-\boldsymbol{q} \boldsymbol{E} \boldsymbol{d} \cos \boldsymbol{\theta}
$$

$>$ We can see from this formula that if q is positive, ΔU will be negative \Rightarrow a positive charge will lose potential energy when it moves in the direction of the electric field $(\boldsymbol{\theta}=0)$ and at the same time will gain kinetic energy, because the total energy is conserved.
$>$ On the other hand, if the charge is negative, ΔU will be positive $\Rightarrow a$ negative charge will gain potential energy when it moves in the direction of the electric field $(\boldsymbol{\theta}=0)$ and at the same time will lose kinetic energy.
5. The electric potential due to a point charge q a distance r away from the point charge is

$$
V_{p}=k \frac{q}{r}
$$

If $q>0$, then $V>0$, and if $q<0$, then $V<0$.

Note: The electric potential is taken to be zero at infinity.
6. The electric potential at a point p due to a group of charges; $\mathrm{q}_{1}, \mathrm{q}_{2}, \mathrm{q}_{3}, \ldots, \mathrm{q}_{\mathrm{n}}$ is given by

$$
\boldsymbol{V}_{\boldsymbol{p}}=\boldsymbol{k}\left(\frac{\boldsymbol{q}_{1}}{\boldsymbol{r}_{1}}+\frac{\boldsymbol{q}_{2}}{\boldsymbol{r}_{2}}+\frac{\boldsymbol{q}_{3}}{\boldsymbol{r}_{3}}+\ldots+\frac{\boldsymbol{q}_{\boldsymbol{n}}}{\boldsymbol{r}_{\boldsymbol{n}}}\right)
$$

7. The potential due to an electric dipole is

$$
\begin{gathered}
\boldsymbol{V}_{p}=\boldsymbol{k} \frac{\boldsymbol{p} \cos \boldsymbol{\theta}}{\boldsymbol{r}^{2}} \\
\boldsymbol{p}=\boldsymbol{q} \boldsymbol{d} \quad \text { is the dipole moment. }
\end{gathered}
$$

8. The electric field E can be evaluated if the electric potential V is known;

$$
\boldsymbol{E}_{x}=-\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{x}} ; \boldsymbol{E}_{y}=-\frac{\partial \boldsymbol{V}}{\partial \boldsymbol{y}} ; \boldsymbol{E}_{z}=-\frac{\partial \boldsymbol{V}}{\partial z}
$$

9. The potential energy of a pair of charges separated by a distance r is given by;

$$
U=k \frac{q_{1} q_{2}}{r}
$$

$$
\begin{array}{lll}
\bullet & \mathrm{r} & \bullet \\
\mathbf{q}_{1} & \mathbf{q}_{2}
\end{array}
$$

Important: THIS ENERGY REPRESENTS THE WORK done by an external agent to assemble the charges from infinity to their position at r .

To assemble three charges; $\mathrm{q}, \mathrm{q}_{2}, \mathrm{q}_{3}$, the potential energy (or work required) will be;

$$
U=\boldsymbol{k}\left(\frac{\boldsymbol{q}_{1} \boldsymbol{q}_{2}}{\boldsymbol{r}_{12}}+\frac{\boldsymbol{q}_{1} \boldsymbol{q}_{3}}{\boldsymbol{r}_{13}}+\frac{\boldsymbol{q}_{2} \boldsymbol{q}_{3}}{r_{23}}\right)
$$

If $U>0$, an external agent do positive work to assemble the charges, and if $U<0$, the electric field does the work.
10. The electric potential of a charged isolated conductor
$>$ The surface of a charged conductor is an equipotential surface.
> Since the electric field inside a conductor is zero, the potential is therefore constant inside a charged conductor and equal to that at the surface.
> For a conducting sphere of radius \boldsymbol{R} and charge \mathbf{q}, the electric potential is

- $V_{i n}=\frac{k q}{R}$ (inside and on the surface of the conductor)
- $V_{\text {out }}=\frac{k q}{r}$ (outside)

