©P P DURTFDSMUII

1. The number of moles, n, in a substance is

$$
n=\frac{N}{N_{A}}=\frac{m}{M}
$$

where N is the number of molecules, m is the mass of the substance, M is the molar mass of the substance and N_{A} is Avogadro's number.
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{-23}$ molecules/mole (is the number of molecules in ONE mole of the substance).
2. All real gases behave as ideal gases at low pressure. The relationship between the temperature T , the volume V , and the pressure P in this case is

$$
P V=n R T \quad \text { The ideal gas law }
$$

$\mathrm{R}=8.31 \mathrm{~J} /$ mole K , is the gas constant and n is the number of moles of the gas.

We have three situations
(i) Temperature constant (isothermal process)
(ii) Volume constant (isochoric process)

$$
\begin{aligned}
& \frac{P_{i}}{P_{f}}=\frac{V_{f}}{V_{i}} \\
& \frac{P_{i}}{P_{f}}=\frac{T_{i}}{T_{f}} \\
& \frac{V_{i}}{T_{i}}=\frac{V_{f}}{T_{f}}
\end{aligned}
$$

(iii) Pressure constant (isobaric process)

In the above equations T in Kelvin.
3. For an isothermal process, the work done on or by the gas is

$$
W=n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \quad T \text { in Kelvin }
$$

For an isobaric process, the work done on or by the gas is

$$
W=P \Delta V
$$

If $\boldsymbol{V}_{f}>\boldsymbol{V}_{i}$ (expansion), then $W>0$, the gas do work
If $\boldsymbol{V}_{f}<\boldsymbol{V}_{i}$ (compression), then $W<0$, external work is done on the gas.
4. The pressure of N molecules of an ideal gas is given by;

$$
P=\frac{n}{3} \frac{M v_{r m s}{ }^{2}}{V}
$$

where $v_{r m s}$ is the root-mean-square speed of the gas molecules $=\sqrt{\overline{v^{2}}}$
This speed is related to the molar mass and the temperature of the gas as follows:

$$
v_{r m s}=\sqrt{\frac{3 R T}{M}} \quad T \text { in Kelvin }
$$

5. The average translational kinetic energy of an ideal gas containing N molecules is related to the temperature of the gas by

$$
\bar{K}=\frac{3}{2} N k T \quad T \text { in Kelvin }
$$

$k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is Boltzman constant.
6. The internal energy of a monoatomic ideal gas is

$$
E_{\mathrm{int}}=\frac{3}{2} N k T=\frac{3}{2} n R T \quad T \text { in Kelvin }
$$

Therefore the change in internal energy is

$$
\Delta E_{\mathrm{int}}=\frac{3}{2} n R \Delta T
$$

So: for an isothermal process the change in internal energy of the gas is ZERO because $\Delta T=0$.
7. The heat absorbed or expelled by a gas depends on the process.
(i) for a constant volume process (isochoric) the heat is given by

$$
Q=n C_{v} \Delta T
$$

(ii) for a constant pressure process (isobaric) the heat is given by

$$
Q=n C_{p} \Delta T
$$

8. For an adiabatic process $(\mathrm{Q}=0)$, the macroscopic thermodynamic variables $(\mathrm{P}, \mathrm{V}, \mathrm{T})$ are related by

$$
\begin{aligned}
P_{i} V_{i}^{\gamma} & =P_{f} V_{f}^{\gamma} \\
T_{i} V_{i}^{\gamma-1} & =T_{f} V_{f}^{\gamma-1} \quad T \text { in Kelvin }
\end{aligned}
$$

where $\gamma=\frac{C_{p}}{C_{v}}$ is the specific heat ratio (constant).

Summary

Process	P-V diagram	W	Q	$\Delta E_{\text {int }}$
Isothermal		$n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$	$n R T \ln \left(\frac{V_{f}}{V_{i}}\right)$	0
Isobaric		$P \Delta V$	$n C_{p} \Delta T$	$n C_{v} \Delta T$
Isochoric		0	$n C_{v} \Delta T$	$n C_{v} \Delta T$
Adiabatic		$-n C_{v} \Delta T$	0	$n C_{v} \Delta T$
Cyclic	3	Area enclosed	Area enclosed	0

Note: $\Delta E_{\text {int }}=n C_{v} \Delta T$ This is ALWAYS true, for all processes!

Gas	\mathbf{C}_{v}	$\mathbf{C}_{\mathbf{p}}$	$\boldsymbol{\gamma}=\mathbf{C}_{\mathrm{p}} / \mathbf{C}_{\mathrm{v}}$
Monoatomic	$3 / 2 \mathrm{R}$	$5 / 2 \mathrm{R}$	1.67
Diatomic	$5 / 2 \mathrm{R}$	$7 / 2 \mathrm{R}$	1.4

$$
C_{p}=C_{v}+R
$$

