Physics 102Rec Quiz#4 Chapter 21

Name:

Key

Id#:

Sect#:

1. An <u>ideal engine</u> operates between two heat reservoirs at temperatures of 300 °C and 20 °C. If the engines receives 1200 cal of heat from the hot reservoir, what is the heat rejected to the cold reservoir?

Ideal engine
$$\Rightarrow \frac{T_c}{T_H} = \frac{Q_c}{Q_H}$$

$$\Rightarrow Q_c = Q_H \frac{T_c}{T_H} = 1200 \frac{293}{573} = 614 \text{ Cal}$$

 A 100 g of ice at 0 °C is heated to 80 °C. Calculate the change in entropy of ice. The specific heat of water is = 4186 J/Kg K, and the heat of fusion = 333 kJ/K)

O'C ice
$$\xrightarrow{\Delta S_1}$$
 O'C water $\xrightarrow{\Delta S_2}$ 80°C water
$$\Delta S = \Delta S_1 + \Delta S_2 = \frac{\text{mL}_f}{T} + \text{m C}_{ij} \ln\left(\frac{T_E}{T_i}\right)$$

$$= \frac{(0.1)(333 \times 10^3)}{273} + \frac{(0.1)(4186)}{273} \ln\left(\frac{353}{273}\right)$$

$$\Delta S = 230 \text{ J/K}$$